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Abstract 

Xiaoyan Ma STUDY OF OPTICAL PROPERTIES OF SKIN TISSUES FROM 
ULTRA-VIOLET TO SHORT-WAVE INFRARED. (Under the direction of Dr. Xin-Hua 
Hu) Department of Physics, June 2004. 

 

Accurate knowledge of optical properties of skin tissues is fundamental to the 

study of tissue optics and development of optical instrumentation in clinics. The goal of 

research described in this dissertation is to develop a system of experimental methods and 

theoretical models for the inverse determination of optical parameters of mammalian 

tissues and various tissue phantoms. Based on the integrating sphere and spatial filtering 

techniques, various experimental systems have been constructed and improved to 

measure the diffuse reflectance, the diffuse transmittance, and the collimated 

transmission of turbid samples from the spectral region of ultraviolet to short-wave 

infrared. Different Monte Carlo based algorithms have been developed to simulate 

photons transportation under different experimental configurations based on the radiation 

transfer theory.  And the corresponding procedures for inverse determination of optical 

parameters from the experimental data have been established.  

We have determined the complex refractive index of polystyrene microspheres as 

a function of wavelength from 370 nm to 1610nm using a Monte Carlo model in 

combination with the Mie phase function.   The optical parameters of porcine skin dermis 

tissues have also been determined by assuming the surface of the dermis samples were 

flat and smooth.  The effect of surface roughness on the inverse determination of bulk 

optical parameters of a turbid sample has been investigated.  We found that the condition 



of sample surface plays an important role in determining the light distribution in a turbid 

sample. Numerical simulations have shown that the surface roughness on scales close to 

the wavelength of light can significantly affect the values of bulk tissue optical 

parameters inversely determined from in vitro measurements even for a moderate index 

mismatch. As a result, we have developed a confocal imaging method to measure the 

surface profile of slab samples of fresh porcine skin dermis and extracted the profile 

parameters.  With this knowledge, the surface roughness corrected optical parameters of 

porcine dermis tissue have been determined at the wavelengths of 325, 442, 532, 632.8, 

850, 106.4, 1330, and 1550 nm. 
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Chapter 1 Introduction 

The study of biomedical application of optical technologies has attracted active 

research efforts over the last two decades. A growing number of optical therapies and 

optical diagnoses such as photodynamic therapy [Henderson and Dougherty 1992], laser 

surgery procedures [Jacques and Prahl 1987], and optical coherent tomography [Huang et 

al 1991, Schmitt 1999] rely on the accurate knowledge of light-tissue interaction. 

However, the complex structures render most human tissues as highly turbid media 

according to their response to the optical radiations from ultraviolet to infrared regions. In 

addition to being absorbed, light propagating inside tissues experiences significant 

scatterings. The strong scattering of light in tissues presents a great challenge to 

characterize quantitatively the optical property of tissues [Cheong et al 1990].  

Skin, as the interface between human body and optical environment, is one of the 

most important organs to study and develop photomedicine. Understanding the 

propagation of light in skin tissues is therefore fundamentally important to many 

applications of optical therapy and diagnosis [Anderson and Parrish 1981, Van Gemert et 

al 1989]. Extensive investigations have been carried out experimentally and theoretically 

in the past decades to determine skin tissues’ optical properties. However, because of the 

turbid nature of the tissues, the theoretical models and experimental procedures employed 

in the previous studies need to be further developed to determine accurately optical 

properties of skin tissues and to advance optical technology in medical applications. The 

long-term goal of our research is to develop a system of experimental methods and 
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theoretical models for accurate determination of optical parameters of mammalian 

tissues. In this dissertation, we used porcine skin dermis and other turbid samples as the 

models of human skin to study the optical properties of skin tissues in spectral regions 

from ultraviolet to near-infrared.  For this purpose, we developed theoretical and 

numerical methods to take into account the effect of surface roughness on determination 

of the bulk optical parameters of a turbid sample. These theoretical investigations were 

combined with the experimental measurements to extract inversely the bulk optical 

parameters of the porcine skin dermis tissues and other turbid samples.  

Development of tissue phantoms is critical to the study of tissue optics and 

calibration of optical instrumentation in clinics. Aqueous suspensions of polystyrene 

microspheres have long been used as tissue phantoms to calibrate instruments for 

measurements of light distributions [Peters et al 1990, Hull et al 1998, Shvalov et al 

1999, Du et al 2001]. In addition, polystyrene microspheres are also employed as carriers 

of different biomedical agents such as antibody markers for a wide range of biomedical 

research [Kettman et al 1989]. The attractiveness of the polystyrene microspheres as the 

calibration standard lies in the fact that the scattering and absorption cross-sections of the 

spheres can be accurately calculated with the Mie theory [Bohren and Huffman 1983]. In 

this dissertation, we describe an inverse method based on the Monte Carlo simulation 

with a Mie phase function to accurately determine the complex refractive index of the 

polystyrene in the form of microspheres from the optical measurements of its water 

suspensions. 
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In Chapter 2, a brief review of the Mie theory is first introduced, which precisely 

predict the light scattering and absorption by a spherical particle. Compared with the 

conventional Mie formulation for a spherical particle immersed in a non-absorbing 

medium, the Mie theory for a spherical particle in an absorbing medium shows different 

features. Recent developments of the Mie theory are discussed.  For light transportation 

in tissues on the macroscopic scales of mm or larger, we present the radiation transfer 

theory as an accurate model to describe light transportation within a turbid medium at the 

macroscopic level based on the law of energy conservation. Then the diffusion 

approximation of the radiation transfer theory is discussed to investigate the thickness 

dependence of light transmission for slab tissue samples. At the end of Chapter 2, the 

confocal imaging theory is presented to demonstrate its ability to evaluate the surface 

roughness of the tissue samples.  

Absence of the analytic solutions of the radiation transfer equations under the 

realistic boundary conditions makes the Monte Carlo simulation the most resorted 

method to model light distribution in a turbid medium with real boundary conditions. In 

Chapter 3, the principle of Monte Carlo simulation and the algorithms for photon tracking 

in a turbid medium are briefly reviewed. For our investigation on light scatterings by 

spherical particles, the effect of different phase functions, the Henyey-Greenstein 

function and Mie phase function, on the determination of its optical properties of the 

turbid medium is discussed.  
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Boundary conditions play a critical role in determining the light distribution in a 

turbid medium and the detection of light signals outside the medium. Therefore, the 

interface profiles adopted in the Monte Carlo modeling will significantly affect the light 

distributions within the turbid medium and how accurately the optical parameters of 

turbid medium can be inversely determined.  A code that is capable to consider surface 

roughness of the skin and turbid samples is developed for our Monte Carlo simulations 

and studies of rough interfaces effects are conducted.  Since optical parameters like 

scattering coefficient, absorption coefficient, anisotropy factor, and complex refractive 

index can’t be measured directly for a turbid medium, proper inverse calculations have to 

be performed. In this dissertation research, different inverse procedures are employed in 

order to obtain optical parameters efficiently under different interface conditions for 

tissue or spherical particles. 

Chapter 4 presents the design of various experimental setups employed for the 

measurements of the diffuse reflectance Rd, the diffuse transmittance Td, and the 

collimated transmission Tc from skin tissues and other turbid samples. Weak signal 

detection and data acquisition with low-noise preamplifier and lock-in amplifier are 

discussed. Sample preparations for porcine dermis tissue and polystyrene microsphere 

suspensions are given in detail.  Scanning confocal microscope method for the surface 

roughness evaluation is described at the end.      

The results of our investigations on porcine dermis tissue and polystyrene 

microsphere suspensions are presented in Chapter 5. The experimental systems for the 



 5

measurements of Rd, Td, and Tc from skin tissues and other turbid samples were 

calibrated. The Monte Carlo codes developed for the inverse determination of the optical 

parameters of skin tissues and other turbid samples from its optical measurements were 

validated through numerical “experiments”. The complex refractive index of polystyrene 

in the form of sphere has been inversely determined from the optical measurements of its 

microsphere suspensions for a spectral region between 370 nm and 1610nm. Optical 

parameters µs, µa, and g of porcine dermis tissue were first determined without 

considering the surface roughness. Numerical investigations indicate that surface 

roughness significantly affect the light distribution in the sample and dramatically change 

the inversely determined optical parameters. With the surface roughness measured by 

confocal imaging, the corrected optical parameters were obtained at 8 wavelengths from 

325 nm to 1550nm. In Chapter 6, we discuss and summarize the results of this 

dissertation research, and point out possible research that should be pursued in the future.  

 

 



Chapter 2   Theoretical Frameworks 

We will first introduce the Mie theory to lay a foundation for understanding the 

light scattering and absorption in turbid media including biological tissues. Derived 

directly from Maxwell’s equations, the Mie theory provides an analytic solution to the 

problem of the interaction of light with a spherical particle within a host medium. The 

effect of the host medium absorption on the optical properties of the microsphere 

suspensions will be particularly noted. Based on the law of energy conservation, the 

radiation transfer theory models accurately at the macroscopic level how light distributes 

inside a strongly turbid medium. The diffusion approximation of the radiation transfer 

theory is examined to evaluate the thickness effect on light transmission for slab tissue 

samples. We will also discuss the principle of confocal optical imaging that is used to 

measure the surface profile of skin tissue samples.  

2.1   Introduction 

Numerous studies have been carried out on skin tissues to investigate their optical 

properties in the visible and shortwave infrared (SWIR) region. Among the early 

investigations, Hardy et al. (1956) have measured goniometrically visible and infrared 

transmittance of human skin in vitro and found that light scattering dominates over 

absorption and has a strong forward characteristics over the spectral region between 0.5 

and 1.23µm in wavelength. Anderson and Parrish (1981) obtained the spectral scattering 

(S) and absorption (K) coefficients for human skin in vitro based on a modified Kubelka-

Munk flux theory [Kubelka 1948, Kulbelka 1954, Van Gemert et al 1987] from the 
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measurements of transmittance and remittance of thin dermal section of typical thickness 

near 200µm in the spectral region from 300nm to 2400nm. Van Gemert et al. (1989) 

calculated the scattering and absorption coefficients using a diffusion model from 

previously published data on human dermis. Marchesini et al (1992) investigated the 

optical properties of human epidermis in vitro in the wavelength region from 400 to 

800nm by measuring the diffuse reflectance and transmittance with integrating sphere.  

Based on the 1-D diffusion approximation of the radiation transport theory, the values of 

µa, µs' were calculated.  We note that all these models used to inversely calculate the 

optical parameters are various approximations to the radiation transport equation.  

With the rapid advances in computer technology, a computationally intensive 

method of Monte Carlo simulation has received wide attention for its ability to precisely 

solve the light transportation problems with realistic boundary conditions within the 

framework of radiation transport theory. In 1983, Wilson and Adams (1983) firstly 

proposed that Monte Carlo modeling be applied to calculate light dosimetry in tissues. 

Peters et al. (1990) reported the determination of (µa, µs, g) for breast tissues from 

measurements of the diffuse reflectance, transmittance and collimated transmission 

through inverse Monte Carlo calculations. Graaff et al (1993) inversely calculated µa and 

the reduced scattering coefficient, µs’ = (1−g)µs, by using Monte Carlo simulation from 

the literature data on the measured total transmittance and total reflectance of samples of 

human skin in vitro at wavelengths between 300 nm to 1300nm. Simpson et al (1998) 

measured ex vivo the diffuse reflectance and transmittance using an integrating sphere 

and obtained µa and µs’ of human skin through Monte Carlo simulations between 620nm 
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and 1000nm. Recently, Du et al (2001) studied the optical property of porcine skin 

dermis from 900nm to 1500nm by using an approach similar to that reported by Peters et 

al (1990).  

Based on the above discussions, we found that significant gaps exist in the 

knowledge base of skin optics in the spectral region from UV to SWIR. There are very 

few data on the optical properties of human skin tissues for wavelengths above 1100nm 

or below 400nm while these regions are important for medical applications such as laser 

ablation [Oraevsky et al 1991] and optical coherent tomography [Tearney et al 1995]. 

Furthermore, the surface roughness of tissue samples used for its optical property 

measurements has not yet been studied which may cause very large deviations of the 

inversely calculated bulk optical parameters from their true values and significant 

fluctuation in the results reported by different research groups. Surfaces of skin samples 

used in the reported measurements were assumed to be flat in their theoretical models and 

thus light deflection at an index mismatched tissue surface was included in the bulk 

scattering. In this dissertation, we present a comprehensive research plan to obtain 

inversely the bulk optical parameters (µa, µs, g) of skin tissues accurately in a broad 

spectral region from 200 nm to 2500nm by combining techniques of spatial filtering and 

integrating sphere measurements and Monte Carlo simulations of light transport in tissue. 

The surface roughness of the tissue samples will be quantitatively determined by means 

of confocal imaging measurements and statistical analysis.  The effect of surface 

roughness will be modeled through Monte Carlo simulations to obtain the bulk optical 

parameters of the fresh porcine skin dermis tissues.  
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2.2   The Mie Theory  

In principle, Maxwell's equations provide the foundation to understand the 

propagation of light in condensed matters including turbid medium.  But its drawback lies 

in the extreme mathematical complexities for systems containing particles of irregular 

shapes and inhomogeneous properties, and hence its usefulness for understanding turbid 

medium is limited.  The Mie theory provides one of the few analytical solutions of the 

light scattering problems for a spherical particle embedded in a medium.  Combining Mie 

theory and the Monte Carlo simulations, we establish an accurate model of light 

distribution in microsphere suspensions which are often used as tissue phantoms for 

calibrating optical instruments and investigating cell and tissue optics [Ma et al 2003].   

When an electromagnetic wave (E, H)  propagates in a linear, isotropic, 

homogeneous medium, it must satisfy the following wave equations 

2 2E k E 0∇ + = ,       (2.1) 

2 2H k H 0∇ + = ,      (2.2) 

derived from the Maxwell’s equations for a monochromatic wave 

E 0∇ ⋅ = ,       (2.3)

 ,       (2.4) H 0∇ ⋅ =

E i H∇ × = ω µ ,      (2.5) 
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H i∇ × = − ωε E ,      (2.6) 

where  is the wave number, ω is the angular frequency of the wave, ε is the 

permittivity of the medium, and µ is the permeability of the medium. 

2k = ω εµ

Instead of solving andE H vectors directly from Eq. (2.1) and (2.2), Mie (1908) 

proposed to construct two vector functions by introducing a scalar function ψ in a 

spherical polar coordinates ( )r, ,θ φ : 

  M ,       (2.7) (r= ∇ × ψ)

MN
k

∇ ×
= ,       (2.8)  

where  and  possess the properties: M N

        ,       (2.9) M 0∇ ⋅ =

N 0∇ ⋅ = ,       (2.10) 

        ,       (2.11) N kM∇ × =

M kN∇ × = .       (2.12) 

More importantly, if ψ is a solution of a scalar wave equation in the spherical polar 

coordinates, i.e., 
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2
2 2

2 2 2

1 1 1r sin
r r r r sin r r sin

∂ ∂ψ ∂ ∂ψ ∂ ψ⎛ ⎞ ⎛ ⎞+ θ + +⎜ ⎟ ⎜ ⎟∂ ∂ θ ∂ ∂θ θ ∂φ⎝ ⎠ ⎝ ⎠
k 0ψ = ,  (2.13) 

then  and will satisfy the vector wave equation: M N

    ,      (2.14) 2 2M k M 0∇ + =

2 2N k N 0∇ + = .      (2.15) 

Therefore,  and  have all the required properties of an electromagnetic field. And 

the problem of finding solution of vector wave equations (2.1) and (2.2) is reduced to 

finding scalar solutions to the wave equation (2.13), which drastically decrease the 

mathematical complexity of the problem. 

M N

2.2.1   The Mie Theory for a Nonabsorbing Host Medium  

Consider first that a plane harmonic wave ( )i iE ,H

)

 illuminates a sphere embedded 

in a medium nonabsorptive to the incident wave, as shown in Fig 2.1. In the medium 

outside the sphere, the electromagnetic field is the superposition of the incident wave 

 and the scattered wave ( i iE ,H ( )s sE ,H

s

s

: 

iE E E= + ,       (2.16) 

 .       (2.17) iH H H= +
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It is pointed out [Bohren and Huffman 1983] that the energy absorbed by the particle is 

given by  

abs rA
W S e

∧

= − ⋅∫ dA ,      (2.18) 

and the energy scattered by the sphere is given by 

sca s rA
W S e d

∧

= ⋅∫ A ,      (2.19) 

where A represents a closed surface surrounding the particle;  is unit vector along the 

radial direction in spherical polar coordinates; S

rê

 is the time-averaged Poynting vector 

and is defined as 

{ }*1S Re E H
2

= × ,      (2.20)  

and { }*
s ss

1S Re E H
2

= ×

dA

. Furthermore, the total energy removed or extinguished from the 

incident wave  will be the sum of  and extW absW scaW  

   ,      (2.21) ext abs scaW W W= +

and can be expressed as 

ext ext rA
W S e

∧

= − ⋅∫ ,      (2.22)  
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where { }*
i s s iext

1S Re E H E H
2

= × + ×
*

. Therefore, the interaction of a plane wave with a 

spherical particle can be characterized by the extinction cross section Cext, the scattering 

cross section Csca, and the absorption cross section as Cabs and they are defined 

respectively as 

ext
ext

i

WC
I

= ,       (2.23)

 sca
sca

i

WC
I

= ,       (2.24) 

abs
abs

i

WC
I

= ,       (2.25) 

and 

ext abs scaC C C= + ,      (2.26) 

where Ii is the incident wave intensity.  

If we assume that the incident plane wave is x-polarized and propagating along 

the z-axis without losing generality, for a homogeneous spherical particle, the scalar 

wave equation (2.13) can be solved exactly [Bohren and Huffman 1983] with details in 

Appendix A1, and the scattering cross section Csca, the extinction cross section Cext and 

the anisotropy parameter g are given in the form of series:  
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     ( )( 2
sca n n2

n 1

2C 2n 1 a
k

∞

=

π
= + +∑ )2b ,      (2.27) 

( ) {ext n n2
n 1

2C 2n 1 Re a
k

∞

=

π
= + +∑ }b ,      (2.28) 

( ) { } ( ) { }* * *
n n 1 n n 1 n n2

n nsca

g cos

n n 24 2Re a a b b Re a b
k C n 1 n n 1+ +

= θ

⎡ ⎤+π +
= + +⎢ ⎥+ +⎣ ⎦

∑ ∑ n 1 , (2.29) 

where the expansion coefficients an and bn are given in appendix A. The numerical values 

of these cross sections were obtained from MIETAB that is available as a public domain 

software and has been validated (http://www.zianet.com/damila/freestuf.htm). 

2.2.2  The Mie Theory for an Absorbing Host Medium 

When the medium within which the sphere is immersed is nonabsorptive to the 

incident wave, the effect of the host medium is simply to reduce the complex refractive 

index of the spherical particle by a factor of the refractive index of the medium. The 

scattering properties such as the scattering cross section Csca, the absorption cross section 

Cabs, and the extinction cross section Cext calculated at the sphere’s surface (i.e., the near 

field) are identical to that calculated in the radiation zone (i.e., the far field).  

However, when the host medium is absorptive to the incident wave, the effect of 

the host medium absorption on the prediction of light scattering by the spherical particle 

requires thorough consideration. Different types of Csca have been employed and 
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discussed in previous studies [Chylek 1997, Fu and Sun 2001, Yang et al 2002]. An 

inherent scattering cross-section can be defined in the near-field, i.e., at the sphere’s 

surface, of the scattered light while an apparent scattering cross-section can be derived 

from the asymptotic form of the scattered light fields in the far-field or the radiation zone 

where light measurements are carried out. As Yang et al [2002] have pointed out, the 

scattered wave when leave the particle and travel within the absorbing medium will 

suffer not only attenuation in magnitude but also modulation of the wave modes when 

reaching the radiation zone. The form of the scattering cross section used to determine 

the scattering properties in the far field needs careful examination. The inherent 

scattering cross section, will couple the medium’s absorption in an inseparable way in the 

radiation zone that it can’t correctly predict the experimental observations in the far field. 

The apparent scattering cross section, which is calculated from the asymptotic form of the 

scattering waves in the far field, will be the proper definition of the scattering cross 

section for the radiation transfer calculations. On the other hand, the inherent absorption 

cross-section is assumed identical to its apparent part, which is defined in the same way 

as the scattering cross section. 

For a plane incident wave with a x-polarization propagating within an absorptive 

medium of the complex refractive index 0N  

0 0rN N iN= + 0i       (2.30) 

the apparent  scattering cross section  is given by '
scaC
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( ) ( )( )2 20i 0 a'
sca n n2 2

n 10 0

2 exp 2N k R
C 2n 1

N k

∞

=

π −
= +∑ a b+

c

    (2.31) 

where  and c is the speed of light in vacuum and R0k /= ω a is the radius of the spherical 

particle. 

Therefore, for spherical particles system of particle number concentration C0 

within an absorptive medium, in the far field, the absorption coefficient  is given by aµ

0i
a 0 abs

4 NC C π
µ = × +

λ
     (2.32) 

and the scattering coefficient sµ  is given by, as suggested by Yang et al [2002], 

( )'
s 0 sca 0i 0 aC C exp 2N k Rµ = × ×     (2.33) 

where  is the absorption cross section, its expression can be found in Appendix A; absC λ  

is the wavelength of the incident wave in vacuum. 

The effect of water absorption is vividly illustrated in Fig 2.2 on the inverse 

determination of the imaginary refractive index ni of polystyrene. In the weak water 

absorption region like 1000nm, the value of ni inversely determined with the water 

absorption being taken into account (squares in Fig.2.2) is identical to one inversely 

determined without considering the water absorption (circles in Fig 2.2) within the 
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experimental error. However, within the water absorption region around 1450nm, 

significant difference shows in the inversely determined values of ni. 

2.3   The Radiation Transport Theory 

Understanding the propagations of light in turbid mediums is essential to many 

applications in medicine.  In contrast to the classical electrodynamic theory, the radiation 

transport theory [Chandrasekhar 1950] is based on the energy conservation law to 

describe light energy or intensity transportation.  With this simplified picture, 

understanding light distribution at the macroscopic scales, much larger than the 

wavelength, becomes possible and, therefore, it has been widely adopted to model light 

propagation and distribution in turbid media in general and in tissue optics in particular.  

Three parameters are used to describe an energy transportation process: the 

absorption coefficient µa, the scattering coefficient µs, and the scattering phase function 

. In this dissertation research we will take further simplifications to assume that a 

particular type of skin tissue, such as epidermis or dermis, can be modeled as a 

homogeneous turbid medium so that the µ

ˆ ˆp(s, s ')

a and µs can be treated as constants 

and can be approximated by a Henyey-Greenstein function [Henyey and 

Greenstein 1941] characterized with a single parameter of anisotropy factor g. 

ˆ ˆp(s, s ')

The radiation transport theory equates -component of the gradient of radiance 

, which is energy flow rate per unit area and solid angle at position  in direction 

ŝ

ˆL(r, s) r
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ŝ , to the losses due to absorption and scattering and the gains due to lights scattered 

from all other directions  into direction and light sources: ŝ ' ŝ

( )a s s
4

ˆ ˆ ˆ ˆ ˆ ˆs L(r, s) L(r, s) p(s, s ')L(r, s ')d ' S(r, s)
π

⋅ ∇ = − µ + µ + µ ω +∫ ˆ   (2.34) 

where is the absorption coefficient, aµ sµ  is the scattering coefficient,  is 

called the attenuation coefficient, 

t aµ = µ + µ s

ˆS(r, s)  is the light power generated by external sources 

per unit area and solid angle at position r  in direction .  The scattering phase function 

 is the possibility of a photon being scattered from the direction of  into the 

direction  and thus satisfies 

ŝ

ˆ ˆp(s, s ') ŝ '

ŝ

4

ˆ ˆp(s,s ')d 1
π

ω =∫      (2.35)  

Generally it is assumed that the light scattering under study is of axial symmetry. 

Therefore, the phase function  is only a function of the angle  between and 

.  The anisotropy factor g is defined as the mean cosine of the scattering angle: 

ˆ ˆp(s, s ') θ ŝ

ŝ '

4 4

ˆ ˆ ˆ ˆ ˆ ˆg p(s s ')(s s ')d ' p(s s ') cos d '
π π

= ⋅ ⋅ ω = ⋅ θ∫ ∫ ω      (2.36) 

which is a measure of deviation of the scattered light distribution from the incident 

direction.  The cases of g = 1, 0, -1 correspond to the completely forward scattering, 

isotropic scattering, and completely backscattering. 
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The radiance within a turbid medium such as the skin tissue can be separated into 

a direct component , which is the 'left-over' portion of the incident light without 

being absorbed and scattered, and a scattering component 

(p ˆL r, s)

( )s ˆL r, s : 

( ) ( ) ( )p sˆ ˆL r, s L r, s L r, s= + ˆ       (2.37) 

The incident light suffers energy loss by the medium absorption and scattering. The 

irradiance of the incident light will decay exponentially in tissue:   

  ( ) ( ) ( )0 0 0 tˆ ˆE r, s E r, s exp= −µ

)

      (2.38) 

where is the irradiance at position (0 0ˆE r, s r  in the absence of tissue attenuation,  is 

the propagation direction of the incident light at position 

0ŝ

r , and  is the distance the 

incident light traveled in tissue before it reach position r . After a portion of the incident 

light experience its first scattering in tissue, it will be removed from pL  to . If we 

assume no other light sources inside tissue, the scattered radiance results from the 

incident light. Therefore, we can treat the direct component of the incident light as the 

source of the scattered radiance in tissue after its first scattering events. The probability 

of photon traveling in the direction being scattered into the direction  is equal to 

. Therefore, the direct component 

sL

0ŝ ŝ

(s ˆ ˆp s sµ ⋅ )0 ( )p ˆL r, s  can be written as 

( ) ( ) ( ) ( )p 0 0ˆ ˆ ˆ ˆL r,s E r,s 1 s s 2= δ − ⋅ π     (2.39) 
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where function δ is the Dirac function. The direct component ( )p ˆL r, s  vanishes except in 

the direction . On the incident direction , Beer’s law can be expressed as 0ˆ ˆs s= 0ŝ

    ( ) ( )p t pˆ ˆs L r,s L r,s⋅∇ = −µ ˆ      (2.40) 

Substituting Eq. (2.37), (2.39), and (2.40) into the radiation transfer equation Eq. (2.34), 

we have 

s t s s s s 0
4

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆs L (r, s) L (r, s) p(s, s ')L (r, s ')d ' p(s, s )E(r, s )
π

⋅ ∇ + µ = µ ω + µ∫ 0ˆ  (2.41) 

The source term in Eq. (2.41), the transfer equation for the scattering component ( )s ˆL r, s  

comes from 

( ) ( ) ( ) ( ) ( )

( ) ( )

s 0 p s 0 0
4 4

s 0 0

d 'ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆS(r,s) p s,s L r,s ' d ' E r,s p s,s ' 1 s ' s
2

ˆ ˆ ˆE r,s p s s
π π

ω
= µ ω = µ δ − ⋅

π

= µ ⋅

∫ ∫  (2.42) 

The net energy flux vector ( )F r , which is a measure of the net scattered energy 

flow at position , is defined by r

s
4

ˆ ˆF(r) L (r, s)sd
π

= ω∫      (2.43) 

For an arbitrary direction , the scattered energy traveling in the positive and negative 

directions of  are defined by the hemispherical energy fluxes  

n̂

n̂
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n s
ˆ ˆs n 0

ˆ ˆ ˆF (r) L (r, s)(s n)d+
⋅ >

= ∫ ⋅ ω       (2.44) 

n s
ˆ ˆs n 0

ˆ ˆ ˆF (r) L (r, s)(s n)d−
⋅ <

= − ⋅ ω∫      (2.45) 

( )nF r+ and  are used here to calculate energies being reflected and transmitted 

by tissue. 

( )nF r−

2.3.1   The Diffusion Approximation 

The scattered radiance ( )s ˆL r, s  can be expanded in a series of Legendre 

polynomials. Taking only the first two terms is often called the P1 approximation of 

diffusion model [Jackson 1962]: 

s 0
3ˆL (r, s) L (r) F(r) s

4
= +

π
ˆ⋅       (2.46) 

where  is a constant at position ( )0L r r  and ( )F r  is the net energy flux vector defined 

by Eq. (2.41). Under the diffusion approximation, the radiant transport equation Eq. 

(2.40) can be transformed into two equations: 

( ) ( ) ( )a s s 0ˆF r r E r,s∇ ⋅ = −µ φ + µ      (2.47) 

( ) ( ) ( )s
s

tr tr

g1 ˆ ˆF r r E r, s s
3 0 0

µ
= − ∇φ +

µ µ
    (2.48) 
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where  is often called the transport attenuation coefficient 

and the fluence rate  is defined as 

( )tr t s a sg 1 gµ = µ − µ = µ + − µ

( )s rφ

( ) ( )s s
4

ˆr L r,s d
π

φ = ∫ ω       (2.49) 

Integrating Eq. (2.44) over the 4π solid angle, we can find 

( ) ( ) ( )s s 0
4

ˆr L r,s d 4 L
π

φ = ω = π∫ r     (2.50) 

Substituting Eq. (2.44) into Eqs. (2.42) and (2.43) gives 

n 0
ˆF(r) nF (r) L (r)

2+
⋅

= π +       (2.51) 

n 0
ˆF(r) nF (r) L (r)

2−
⋅

= π −       (2.52) 

From Eq. (2.49) and Eq. (2.50), we can find 

n nˆF(r) n F (r) F (r)+ −⋅ = −       (2.53) 

[ ]s n n(r ) 2 F (r) F (r)+ −φ = +       (2.54) 
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2.3.2 Diffusion Theory in Infinite Slab of Finite Thickness with a Wide-Beam 
            Collimated Light 

Consider an infinite tissue slab of finite thickness d in the air illuminated 

perpendicularly by a uniform light  (Fig.2.3). At the air-tissue boundaries, the incident 

light will experience reflections and refractions. And inside the tissue it will experience 

absorptions and scatterings. The irradiance of the collimated incident light will have the 

form 

0E

( ) ( ) ( )ce 0 tE z 1 r E exp z= − −µ  inside the tissue. Here,  represents the specular 

reflection coefficient for the collimated light at the air-tissue boundary. If assume that the 

beam size is sufficiently large (wide-beam), the net energy flux vector  will be 

parallel to the positive z axis inside tissue. Therefore, the radiation transport equations, 

Eq. (2.45) and (2.46) in one-dimension can be written as with 

cer

( )F r

ˆ ˆn z= [Star 1995] 

      [ ] [ ]z z a z z s 0 ceF (z) F (z) 2 F (z) F (z) E (1 r ) exp( z)
z + − + −

∂
− = − µ + + µ − −µ

∂ t   (2.55) 

     [ ] [ ]z z tr z z s 0 ce
3 3F (z) F (z) F (z) F (z) g E (1 r ) exp( z)

z 2 2+ − + −
∂

+ = − µ − + µ − −µ
∂ t  (2.56) 

It is usually assumed that the hemispherical fluxes zF +  and zF −  at a refractive index 

mismatched boundary can be related by a reflection factor : 21r

2 1
21r 1.44n 0.71n 0.668 0.0636n−= − + + +     (2.57) 
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where n is the refractive index of tissue in this case. If we further assume generally that 

there is no light scattering in the air and all the scatterings happen in tissue, the boundary 

conditions will be given by: 

( ) ( )z 21 zF 0 r F 0 at z 0+ −= =

=

      (2.58) 

( ) ( )z 21 zF d r F d at z d− +=      (2.59) 

In order to solve the transport equations [Eqs. (2.53) and (2.54)] with boundary 

conditions Eqs.(2.56) and (2.57), we firstly make a transformation: 

z z 21 zF ' (z) F (z) r F (z)+ + −= −       (2.60) 

z z 21 zF ' (z) F (z) r F (z)− − += −       (2.61) 

Under this transformation, the transport equations [Eqs. (2.53) and (2.54)] become 

( ) ( )

( ) ( ) ( ) ( )

z z
21

a z z s ce 0
21

1 F ' z F ' z
1 r z

12 F' z F ' z 1 r E exp
1 r

+ −

+ −

∂
−⎡ ⎤⎣ ⎦+ ∂

= − µ + + µ − −µ⎡ ⎤⎣ ⎦− tz
 

           (2.62) 
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( ) ( )

( ) ( ) ( ) (

z z
21

tr z z s ce 0 t
21

1 F ' z F ' z
1 r z

3 1 3F' z F ' z g 1 r E exp z
2 1 r 2

+ −

+ −

∂
+⎡ ⎤⎣ ⎦− ∂

= − µ − + µ − −µ⎡ ⎤⎣ ⎦+
)

=

=

 

           (2.63) 

and the boundary conditions become 

( )zF ' 0 0 at z 0+ =      (2.64) 

( )zF ' d 0 at z d− =      (2.65) 

Solving  and  from Eqs. (2.60) and (2.61) produces ( )'
zF z+ ( )'

zF z−

( ) ( ) ( )
2

z a tr z t2 F ' z 3 F ' z S ' e xp z 0
z ± ± ±

∂
− µ µ + −µ =

∂
    (2.66) 

where  

21S ' S r S+ += − −

+

      (2.67) 

21S ' S r S− −= −       (2.68) 

and  

( ) ( )s
a s ceS 5 9g 5 1 r

4+
µ

= + µ + µ −⎡ ⎤⎣ ⎦ 0E     (2.69) 
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 ( ) ( )s
a s ceS 1 3g 1 r

4−
µ

= − µ + µ −⎡ ⎤⎣ ⎦ 0E     (2.70) 

The solutions of Eq. (2.64) have the forms 

( ) ( ) ( ) ( )z eff effF ' z A exp z A exp z A exp z+ ++ +− += µ + −µ + − tµ   (2.71) 

and 

( ) ( ) ( ) ( )z eff effF ' z A exp z A exp z A exp z− −+ −− −= µ + −µ + − tµ   (2.72) 

where 

( ) ( ){ }1 21 2
eff a tr a a s3 3 1 gµ = µ µ = µ µ + − µ⎡ ⎤⎣ ⎦      (2.73) 

If Eqs. (2.69) and (2.70) are substituted  into Eq. (2.64) , the coefficient of the 

exponential term  will generate  ( texp z−µ )

2 2
t ef

S 'A ±
± = −

µ − µ f

       (2.74) 

If Eqs. (2.69) and (2.70) are substituted into Eqs. (2.60) and (2.61), the coefficient of each 

exponential term will produce the following relations: 

A q ' A++ −+=         (2.75) 

A q ' A−− +−=         (2.76) 
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where 

( ) ( )
( ) ( )

eff a 21 eff a

eff a 21 eff a

2 r 2
q '

2 r 2
µ − µ − µ − µ

=
µ + µ + µ − µ

     (2.77) 

 

By applying the boundary conditions Eqs. (2.62) and (2.63) to solutions Eqs. (2.69) and 

(2.70), we have 

A A A++ +− ++ + = 0        (2.78) 

( ) ( ) ( )eff eff tA exp d A exp d A exp d 0−+ −− −µ + −µ + −µ =   (2.79) 

Combining Eqs. (2.73) and (2.74) with Eqs. (2.76) and (2.77), we can find 

( ) (

( )

)

( )

eff t

eff eff

A exp d A exp d
q 'A 1q ' exp d exp d

q '

+
−

+−

µ − −µ
=

−µ − µ
    (2.80) 

( ) ( )

( ) ( )

eff t

eff eff

AA exp d exp d
q 'A 1q ' exp d exp d

q '

−
+

−+

− −µ + −µ
=

−µ − µ
    (2.81) 

According to the transform Eqs. (2.58) and (2.59), the energy flows in the positive and 

negative direction of z are given by 
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[z z 212
21

1F (z) F ' (z) r F ' (z)
1 r+ += +

−
]z−      (2.82) 

z z 212
21

1F (z) F ' (z) r F ' (z)
1 r− − z _⎡ ⎤= +⎣ ⎦−

     (2.83) 

Therefore, the reflected energy flow, which is equal to the net energy flux in the negative 

z direction, is given by 

( ) ( )21 z ce 0R 1 r F 0 r E−= − +      (2.84) 

And the transmitted energy flow, which is equal to the net energy flux in the positive z 

direction, is given by 

( ) ( ) ( ) (2
21 z ce 0 tT 1 r F d 1 r E exp d+= − + − −µ )    (2.85) 

The dependence of transmittance T depicted by Eq. (2.85) on the thickness d 

contains not only term ( )texp d−µ ⋅ , which describes the attenuation of the direct 

component, but also terms ( )effexp dµ ⋅  and ( )effexp d−µ ⋅ . Therefore, the transmittance 

T described by Eq. (2.85) will deviate gradually the straight line determined by 

 as d increases. As shown in Fig 2.4, dependence of the collimated 

transmission Tc was determined through Monte Carlo simulations with parameters µ

( texp d−µ ⋅ )

)

a = 

0.4 mm-1, µt = 40 mm-1, and g =0.8. As expected, Tc decays as  at small d. 

As d increases, T

( texp d−µ ⋅

c becomes flattened because diffused scatterings. As illustrated in Fig 
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2.3, a function containing terms ( )effexp dµ ⋅ , ( )effexp d−µ ⋅ , and  precisely 

predicts the behavior of T

( texp d−µ ⋅ )

c and correctly extract the parameter of µt. 

2.4   Diffraction Theory of Confocal Imaging 

  Confocal optical microscopy has long established itself as a useful tool in 

biomedical science by sharply increasing the depth resolution of the cross-section images 

[Wilson 1990]. Taking advantage of viewing only a very small volume near focus of the 

objective lens through spatial filtering, confocal imaging could be used to realize optical 

tomography.  

In the paraxial region as shown in Fig.2.5, the Kirchhoff's diffraction formula 

provides an approximate solution to the wave equation for the amplitude of the scalar 

electromagnetic field in the plane (x2, y2) in terms of the distribution in the plane (x1, y1) 

[Born and Wolf 1999]: 

( ) ( ) ikR
2 2 2 1 1 1 1

1U x , y U x , y e dx dy
i R

+∞
−

−∞

=
λ∫ ∫ 1      (2.86) 

where k is the wave number, given by k=2π/λ. According to the Fresnel approximation (z 

>>x1, y1, x2 ,y2), we may replace the R in the denominator by z and the R in the exponent 

by the first two terms in its binomial expansion 

( ) ( )
( ) ( ){ }2 2

2 1 2 1
ikikz x x y y
2z

2 2 2 1 1 1 1
eU x , y U x , y e dx dy
i z

+∞− − − + −

−∞

=
λ ∫ ∫ 1    (2.87) 
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Furthermore, if we consider the Fraunhofer approximation, given by ( )2 2
1 1

1z k x y
2

+ , 

we may neglect the terms involving 2
1x  and 2

1y  in Eq. (2.87) 

( ) ( ) ( )
( )2 2

2 2 1 2 1 2
ik ikikz x y x x y y
2z z

2 2 2 1 1 1 1
eU x , y e U x , y e dx dy
i z

+∞− − + +

−∞

=
λ ∫ ∫ 1    (2.88) 

Considering a thin lens with a focal length f, as shown in Fig. 2.6, satisfying the 

lens law 
1 2

1 1
d d f

+ =
1 , the image field amplitude U (x3, y3) in a plane located behind the 

lens with a distance d2 is then given by [Wilson and Sheppard 1984] 

( )
( )

( ) ( )

( ) ( )

1

2 2 2 2 3 3
2 1 2 11 1 3 3

11 1

ikd 1 M

3 3 2 2 1 12 2
1

ik x yik ik x x y yx y x y
d M M2d 2Md

1 1 2 2

eU x , y P x , y U x , y
Md

e e e dx dy dx

+∞− +

−∞

− − ⎡ ⎤⎛ ⎞ ⎛ ⎞+ + ++ + ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

= −
λ

× ×

∫∫ ∫ ∫

dy

a
a

 (2.89) 

where U(x1,y1) is the objective field amplitude in a plane at a distance d1 before the lens, 

M=d2/d1 is the magnification of the lens, and P(x2,y2) is the pupil function of the lens. For 

a circular lens of radius a, the pupil function is assumed to have the form: 

( )
1 r

P r
0 r

≤⎧
= ⎨ >⎩

      (2.90) 

Therefore, we find the image intensity of a point source objective as 
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( ) ( ) ( ) 2
2 1

3 3

2J v
I v U x , y

v
⎛ ⎞

= = ⎜
⎝ ⎠

⎟     (2.91) 

where J1 is a first order Bessel function and the normalized coordinate v is given by 

2v r sinπ
=

λ
α        (2.92) 

and r is the coordinate in the image plane, 1sin a / dα =  is  the numeric aperture of the 

lens.  The variation of image intensity along the optical axis around the image plane is 

( ) ( ) 2
sin u 4

I u
u 4

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
      (2.93) 

with ( )2 2 2u kza / f 4kz sin 2≈ ≈ α  and z is the distance from the image plane. 

Now consider a confocal imaging system shown in Fig.2.7. One lens of pupil 

function  focuses light onto the investigated object of amplitude transmittance 

t(x

(1 1 1P ,ξ η )

)

0,y0); the transmitted radiation is then collected by another lens of pupil function 

 and focused onto a detector (2 2 2P ,ξ η ( )2 2D x , y of constant sensitivity through a 

pinhole.  The field just after passing the object can be written as 

( ) ( ) ( )1 0 0 1 0 0 0 0U x , y h x , y t x , y=      (2.94)  
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where the amplitude point spread function h1 of the lens ( )1 1 1P ,ξ η  is given by 

  ( ) ( )
( )1 0 1 0

1

ik x y
d

1 0 0 1 1 1 1h x , y P , e d d
+∞ ξ +η

−∞

= ξ η ξ∫ ∫ 1η

) )

)

     (2.95) 

The field after the lens  can be found by propagating  to the 

 plane 

      

(2 2 2P ,ξ η (1 0 0U x , y

( 2 2,ξ η

( ) ( )
( )

( )
0 2 0 2

2

ik x y
d

2 2 2 1 0 0 2 2 2 0 0U , U x , y e P , dx dy
+∞ ξ + η

−∞

ξ η = ξ η∫ ∫ .    (2.96) 

Finally, the field in the detector plane can be obtained as 

 

( )

( )
( )

( ) ( )

2 2 2 2
2

2 2

ik x y
Md

2 2 2 2 2

2 2
1 0 0 0 0 2 0 0 0 0

U x , y

U , e d d

x yh x , y t x , y h x , y dx dy
M M

+∞ ξ +η

−∞

+∞

−∞

= ξ η ξ η

⎛ ⎞= +⎜ ⎟
⎝ ⎠

∫ ∫

∫ ∫ +

  (2.97) 

where  

              ( ) ( )
( )2 2

2

ik x y
d

2 2 2 2h x, y P , e d d
+∞ ξ +η

−∞

= ξ η ξ∫ ∫ 2 2η      (2.98)  

and M is the linear magnification of lens ( )2 2 2P ,ξ η . 

Therefore, the intensity detected by a point detector ( ) ( ) (2 2 2 2D x , y x y= δ δ )  is 
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( ) ( ) ( )
2

1 0 0 0 0 2 0 0 0 0I h x , y t x , y h x , y dx dy
+∞

−∞

= ∫ ∫    (2.99)  

If the two lenses are circular and of equal numerical aperture, the image of a point object 

is 

( ) ( ) 4
12J v

I v
v

⎛ ⎞
= ⎜

⎝ ⎠
⎟      (2.100)  

and the axial intensity varies as 

( ) ( ) 4
sin u 4

I u
u 4

⎛ ⎞
= ⎜

⎝ ⎠
⎟       (2.101) 

Compare with the conventional lens imaging, Eq. (2.91) and Eq. (2.93), we can see that 

the confocal image, Eq. (2.100), and (2.101), is dramatically sharpened, as shown in 

Fig.2.8. And the intensity falls off monotonically away from the image plane. 
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Figure 2.1 Geometry for the scattering of a linearly polarized plane 
wave by a spherical particle. 
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Figure 2.2 Effect of water absorption on the determination of the 
imaginary refractive index ni of polystyrene microsphere. Solid lines are 
for guide of eye. 
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 Figure 2.3 Geometry of tissue slab. 
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Figure 2.4 Dependence of collimated transmission Tc on thick d. Circles represents 
Monte Carlo simulated Tc with µa = 0.4 mm-1, µt = 40 mm-1 and g =0.8.  The red line 
shows the decay of . The blue line represents function texp( d)−µ ⋅

( ) ( ) ( )'
eff eff ty a exp d b exp d c exp d= × µ ⋅ + × −µ ⋅ + × −µ ⋅ 1

eff 3.5mm−

1
t 39.4mm−µ =

 with µ =  and 

. Tc is plotted in log scale. 
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Figure 2.5 Kirchhoff diffraction geometry. 
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Figure 2.6 Optical imaging by a lens. 
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Figure 2.7 Confocal imaging. 
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Figure 2.8 Variation of image intensity along the optical axis for conventional 
lens imaging (solid line) and confocal imaging (dash line).  



Chapter 3   Numerical Simulations and Analysis 

Numerical simulations of light energy transport in a turbid medium are 

fundamentally important in many medical applications of light. Because of the complex 

structures of biological tissues, neither the Maxwell’s equations nor the radiation transfer 

equation can be solved analytically to model light-tissue interaction problems under 

realistic boundary conditions. However, with light being treated as classical particles of 

photons without phase information, Monte Carlo simulations offer a statistical and yet 

vigorous approach toward understanding light distribution distributions within the 

framework of radiation transfer theory [Wilson and Adams 1983]. In this chapter, we 

introduce briefly the principle of Monte Carlo simulations and photon tracking 

algorithms and discuss the inverse methods for determining the optical parameters of 

turbid samples in vitro and the effect of surface roughness. 

3.1   Monte Carlo Simulations 

3.1.1   Statistical Treatments of Photon Transportation 

 Monte Carlo simulation depends on the random sampling of variables from the 

given probability distributions. Consider a random variable x, its probability density 

function, , defines the distribution of x over an interval ( )pξ ξ a b≤ ξ ≤  and satisfies: 

( )
b

a

p dξ ξ ξ =∫ 1       (3.1) 
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The probability that x will fall in the interval 1a ≤ ξ ≤ ξ  is given by a distribution 

function,  ( )1Fξ ξ

( ) ( )
1

1
a

F p
ξ

ξ ξξ = ξ ξ∫ d       (3.2) 

For a random number ζ generated by the random number generator, its 

probability density function remains uniform within the interval 0 1≤ ζ ≤ , i.e., 

  ( )pζ 1ζ =        (3.3) 

And the corresponding distribution function ( )1Fζ ζ  is given by 

( ) ( )
1

1
0

F p d
ζ

ζ ζ 1ζ = ζ ζ =∫ ζ      (3.4) 

The Monte Carlo method is to transform the uniformly distributed random 

numbers ζ to a unique choice of the random variable x that is consistent with the given 

probability density function ( )pξ ξ . The key to the Monte Carlo selection of x by means 

of ζ is based on the one-to-one mapping between the two probability distributions. It is 

recognized [Cashwell and Everett 1959, Kalos and Whitlock 1986] that if Eq. (3.2)  is 

equivalent to Eq. (3.4) 
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( ) ( )
1 1

1
a a

p d p d
ζ ξ

ζ ζ = ζ = ξ ξ∫ ∫      (3.5) 

a choice of the evenly distributed random number 1ζ  will determine a unique value 1ξ  

from the given probability density function ( )pξ ξ . In general, Eq. (3.5) can be written as 

( )
a

p d
ξ

ζ = ξ∫ ξ        (3.6) 

The absorption and scattering coefficients are related to the probabilities of a 

propagating particle being absorbed or scattered per unit of propagation length 

respectively.  This can be realized by requiring the probabilities that a photon being 

absorbed or scattered in the interval [0,L] as [Keijer et al (1989)] 

( ) ( )abs aF L 1 exp L= − −µ       (3.7) 

and 

( ) ( )sca sF L 1 exp L= − −µ      (3.8) 

respectively. Therefore, the probability density functions for the absorption and scattering 

events can be deduced from derivatives of Eq. (3.7) and Eq. (3.8) and expressed as 

( ) ( )abs a ap L exp L= µ −µ      (3.9) 

( ) ( )sca s sp L exp L= µ −µ      (3.10) 

By combining Eq. (3.6) and Eq. (3.10), one can randomly choose a free path length of 

scattering  for a photon between two scattering events using a random number ζ  scaL



 45

( )
sca

s

ln 1
L

− ζ
= −

µ
      (3.11) 

which obeys the given distribution described by Eq.(3.8). Similarly, the total path length 

of a photon traveled before being absorbed is given by 

( )
abs

a

ln 1
L

−ζ
= −

µ
      (3.12) 

For a scattered photon, its trajectory is deflected by an angle θ in the interval [0, 

π]. For tissues, the widely adopted probability density function of angle θ, also called 

phase function, was first proposed by Henyey and Greenstein (1941), and is expressed as  

( ) ( )
2

2

1 gp cos
2 1 g 2g cos

−
θ =

+ − θ
    (3.13) 

where the parameter g is called the anisotropy factor, which is a measure of the 

asymmetry of scattered light distribution, and is defined by 

( )
0

g p cos cos sin d
π

= θ θ θ∫ θ      (3.14) 

With the introduction of , Eq. (3.13) becomes cosµ = θ

( ) ( )
2

2

1 gp
2 1 g 2g

−
µ =

+ − µ
     (3.15) 

By applying Eq. (3.6) to Eq. (3.15), the scattering angle θ can be selected through the 

random number ζ by 
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22
21 1 g1 g for g 0

2g 1 g 2g

⎡ ⎤⎛ ⎞−
⎢ ⎥µ = + − ≠⎜ ⎟− + ζ⎢ ⎥⎝ ⎠⎣ ⎦

  (3.16) 

and 

2 1 for g 0µ = ζ − =      (3.17) 

In the above derivations, we assume that the photon deflects symmetrically about 

the incident direction by an azimuthal angle ψ that uniformly distributes in the interval 

[0, 2π]. Based on Eq. (3.6), we have 

2ψ = πζ        (3.18) 

3.1.2   Photon Tracking Algorithm Based on the Monte Carlo Method 

In Monte Carlo simulations, various random processes are used to track the 

propagation of photons in a turbid tissue. In our model, the tissue sample and holder 

assembly is simulated as a three-layer structure in which a turbid layer is sandwiched 

between two transparent layers. The latter simulate the sample holder using two flat 

window glasses (one is called the entrance window glass, the other is called the exit 

window glass).  The modeled structure is surrounded by air. The turbid layer is modeled 

as a homogeneous turbid medium with the absorption coefficient , the scattering 

coefficient , and the refractive index as constant. Henyey-Greenstein function is used 

as the scattering phase function, which is characterized by a single anisotropy factor g. 

The propagation of a photon inside the turbid medium is simulated as ‘random-walk’. 

aµ

sµ
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The two window glasses are treated as a uniform medium free of scattering and 

absorption to every photon. Within a window glass, a photon moves simply from one 

interface to the other.  

Each photon is first injected towards the glass-tissue interface inside the entrance 

window glass in a way that corresponds to a collimated incident beam. At the glass-tissue 

interface, Fresnel’s equation is used to decide the direction of the tracked photon by 

comparison of a random number with the reflectivity: if the random number is less than 

the reflectivity, the tracked photon will move into the tissue; if the random number is 

bigger than the reflectivity, the photon is reflected back and remain in the window glass. 

If reflection happens at the glass-tissue interface, the tracked photon will arrive at the 

glass-air interface. Again at the glass-air interface Fresnel’s equation is used to determine 

whether the tracked photon moves out of the glass and is registered as backward 

scattering or is reflected back into glass and moves toward the glass-tissue interface and 

the tracking process will start over again. 

Once the tracked photon moves inside the tissue, its total path length s 

determined from Eq. (3.11), which defines the “life” of this photon in space before being 

absorbed and the step size  for each of its movement is defined by Eq. (3.10). When a 

scattering event happens, the direction of the tracked photon’s movement after scattering 

is decided by Eq. (3.15), Eq. (3.16) and Eq. (3.17). As the tracked photon reaches the 

tissue-glass interface, Fresnel’s equation will be applied to check if the tracked photon is 

still within the tissue or moves into the window glass. 

absL i

scaL
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During the photon tracking within the tissue, two confinements are checked after 

each movement. The first checkpoint is the accumulated distance that a photon has 

traveled. If it exceeds , the photon is designated as absorbed. The second checkpoint 

is the side limits defined by the turbid layer’s lateral dimensions. If a photon moves out 

of the side limitations, it is registered as leaked or escaped.  

absL

For the period that the tracked photon moves within the entrance or exit window 

glass, Fresnel’s equation is applied successively at the glass-air interface or the glass-

tissue interface to decide whether the tracked photon still stay within the entrance or exit 

window glass or moves out into either tissue or the surrounding air. If the tracked photon 

is found to move out into the surrounding air, it is registered as forward scattering if it 

moves out from the exit window glass or backward scattering if it moves out from the 

entrance window glass. As long as the tracked phone travels inside the tissue, the tracking 

procedure mentioned above for a photon inside the tissue is repeated. 

There is only one confinement to check after each movement when the tracked 

photon stays inside the window glasses. This checkpoint is the side limits defined by the 

widow glasses’ lateral dimensions. If a photon moves out of the side limitations, it is 

registered as leaked.  

3.2   The Role of Phase Function 

The implementation of Monte Carlo simulation of light transportation within a 

turbid medium requires a priori knowledge of the scattering phase function. 



 49

Unfortunately, structure complexities and the unknown nature of inhomogeneities for 

most of the turbid media like biomedical tissues make the construction of the real phase 

functions based on the scattering theory of electromagnetic waves practically impossible. 

Henyey and Greenstein (1941) proposed the phase function (HG), which approximates 

the scattering angle distributions calculated from Mie theory, is the most widely adopted 

form of phase functions to model the photon transport in a turbid medium according to 

the radiation transfer theory. Van Gemert et al (1989) measured the scattering phase 

functions of the stratum cornea and epidermis with a goniometer within an angular range 

from ~00 to 600.  It was found that the HG phase function fits the experimental data 

plausibly well. However, as was pointed out by Mourant et al (1996), there still exist 

differences in the curve shapes between the experimental scattering phase function and 

the HG phase function. Furthermore, measurements on the brain tissue made by Van der 

Zee et al (1993) showed that the value of the scattering phase function increased at angles 

greater that 1500 that is not a feature of the HG phase function. Recently, Kienle et al 

(2001) discussed the effect of the phase function on determination of the optical 

parameters by the spatially resolved reflectance. It was indicated that significant 

differences occurred in the derived reduced scattering and absorption coefficients if 

different phase functions were utilized in the inverse Monte Carlo simulations.  

Aqueous suspension of polystyrene microspheres is one of a few turbid media of 

which the exact form of phase function is known. Mie theory provides a precise solution 

to the light interaction with a single sphere. The scattering phase function can be 

precisely calculated for a sphere with known refractive index, wavelength, and radius. 
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Therefore, the Monte Carlo simulation of photon distribution within an aqueous 

suspension of polystyrene microsphere can be carried out using the accurate scattering 

phase function, instead of the HG phase function.   

For an unpolarized incident light, the scattering phase function by a sphere is 

given by [Bohren et al 1983]   

( 2
1 2

1p S S
2

= + )2           (3.19) 

where 

( ) (1 n n
n

2n 1S a
n n 1

)n nb+
= π

+∑ + τ     (3.20) 

( ) (2 n n
n

2n 1S a
n n 1

)n nb+
= τ +

+∑ π     (3.21) 

and definitions of an,bn, πn,τn can be found in Appendix A. 

Even through the value of the Mie phase function at a given scattering angle for a 

spherical particle can be calculated from Eq. (3.19), it is still mathematically difficult to 

apply Eq. (3.6) in Monte Carlo simulations. The integral of the Mie phase function, Eq. 

(3.19), is not feasible to lead to an analytical expression of the scattering angle in a closed 

form because of the complicated form of Eq. (3.19).  

In order to use the exact form of phase function in Monte Carlo simulation of 

light propagation in polystyrene microsphere suspensions, Toublanc [1996] proposed that 
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a table of Mie’s phase function ( )ip θ  versus the scattering angle θ was constructed and 

normalized by 

( )
N

i
i 1

p
=

1θ =∑        (3.22) 

where N is the total number of angles equally divided between 00 and 1800.  The 

scattering angle was then determined by finding an integer m to satisfy 

( ) ( )
m 1 m

i
i 1 i 1

p RND p
−

= =

θ 〈 ≤ θ∑ ∑ i       (3.23) 

where RND is the random number uniformly distributed between 0 and 1, and the left 

sum is set to zero when m = 1. The number N determines the sampling accuracy and we 

found that  was sufficiently large to sample the scattering angle θ with an 

accuracy of 0.036

N 5000=

0 without significantly slowing down the Monte Carlo simulations. 

3.3   The Inverse Method 

Let S be the physical system under investigation. Assume that there exists a set of 

model parameters whose values completely characterize the system. The forward 

modeling problem is to find the physical laws that could be used to make predictions on 

values of some observable parameters from given values of the model parameters. The 

inverse problem is, on the other hand to use the measured results of the observable 

parameters to infer the values of the system parameters. 
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Within the radiation transfer theory, the optical properties of a turbid medium 

such as tissues are characterized by the scattering coefficient , the absorption 

coefficient  and the scattering phase function 

sµ

aµ ( )p s, s 'G G  that describes the probability of 

light being scattered from a direction s 'G  to direction sG . Since these parameters cannot be 

measured directly and analytical solutions of the radiation transfer theory cannot be found 

for nearly all the practical cases, modeling of tissue optics often has to be achieved 

statistically through Monte Carlo methods. And multiple Monte Carlo simulations have 

to be carried out to retrieve inversely the optical parameters of the turbid medium from 

experimental results. 

In order to evaluate the optical properties of tissues, the diffuse reflectance and 

transmittance, Rd and Td, and the collimated transmission Tc were measured in this 

dissertation by the integrating sphere and the spatial filtering respectively. And the 

Henyey-Greenstein function was adopted as the scattering phase function. Therefore, the 

distribution of the scattering angles was determined by a single parameter g. The 

determination of , , and g from the measured Rsµ aµ d, Td, and Tc was realized through the 

Monte Carlo simulations and optimization iteration using the least-square criterion. Two 

different Monte Carlo based optimization methods, which correspond to two different 

procedures to measure Rd, Td, and Tc were used to find out the optimal optical parameters 

, , and g.  sµ aµ
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The first Monte Carlo based optimization method used to search for the best 

possible values of , , and g of a turbid medium is used for cases that the measured 

R

sµ aµ

d, Td, and Tc from the same sample are used as the inputs to the inverse calculations. 

Consequently, , , and g become three free variables for the Monte Carlo 

optimizations. For any selected 

sµ aµ

sµ , aµ , and g, Monte Carlo simulation produces the 

calculated values of Rd, Td, and Tc represented here by ( )d cal
R , , and ( )d cal

T ( )c cal
T  

respectively.  The least-square criterion 2δ used for optimization iteration is   

( ) ( ) ( )2 2
d d d d c c2 cal cal cal

d d

R R T T T T
R T T

⎛ ⎞ ⎛ ⎞ ⎛− −
δ = + +⎜ ⎟ ⎜ ⎟ ⎜⎜ ⎟ ⎜ ⎟ ⎜

⎝ ⎠ ⎝ ⎠ ⎝

2

c

⎞−
⎟⎟
⎠

   (3.24) 

The iteration process for the inverse determination of sµ , aµ  and g stopped when 

, that corresponds to a relative error of about 1.2% for ( ,  and 

. 

2 4 10−δ ≤ × 4 )d cal
R ( )d cal

T

( )c cal
T

Some rules that can help reduce the number of iteration in searching the optimal 

values of ,  and g for the current situation are discussed below. Generally speaking, 

changes in any of ,  and g may induce coupled effects on ( ,  and 

. When  increases, 

sµ aµ

sµ aµ )d cal
R ( )d cal

T

( )c cal
T sµ ( )c cal

T  will decrease but the ratio of (  and ( will 

increase and vice versa. This behavior is being observed in a large range, but exception 

may occurs when is close to 

)d cal
R )d cal

T

2δ 44 10−× . In the vicinity of , a slight increase 

in  may cause (  increase. When this happens, the best tactics that is practically 

2 4 10−δ ≤ × 4

sµ )c cal
T
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observed is to adjust  and g.  Increase in aµ sµ  also slightly draw the sum of (  and 

 to increase and vice versa. At the time when g increases, the ratio of (  and 

will decrease but  tends to increase and vice versa. Few exceptions are 

observed to this rule. In the meantime, increase in g can lead to changes in the sum of 

 and ( , but no preferred tendencies are practically observed. Decrease of 

)d cal
R

( )d cal
T )d cal

R

( )d cal
T ( )c cal

T

( )d cal
R )d cal

T aµ  

is always the choice to diminish the values of ( )d cal
R , ( )d cal

T , and ( , and vice versa. 

Meanwhile decrease in will reduce the ratio of 

)c cal
T

aµ ( )d cal
R  and ( )d cal

T , and vice versa. 

After a Monte Carlo simulation, it was practically found that to bring the ratio of 

 and  close to the ratio of the measured R( )d cal
R ( )d cal

T d and Td by adjusting g is most 

profitable to reduce the iteration times. Whence the ratio of ( )d cal
R  and  is in the 

close vicinity of the ratio of the measured R

( )d cal
T

d and Td, alter aµ  to trim down the difference 

between the sum of ( , )d cal
R ( )d cal

T  and the sum of the measured Rd, Td. And last vary 

to make (  close to the measured Tsµ )c cal
T c. As discussed above, the side effects that the 

change of a parameter may make other parameters’ values going back and forth.  

The second Monte Carlo based optimization method is suitable for the 

experimental procedure that the measured values of Rd, Td and Tc come from different 

samples. The collimated transmission Tc for samples with different thickness was 

measured. According to the Lambert-beer’s law for the collimated transmission Tc at a 

fixed wavelength 
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( )cT A exp D= −µ t      (3.25) 

where A denotes the loss and deflection of incident light at the surfaces of the tissue 

sample, the bulk attenuation coefficient tµ  is the slope of the fitted straight line between 

log (Tc) and sample thickness D. Since tµ  is the sum of the scattering coefficient sµ  and 

the absorption coefficient  aµ

t s aµ = µ +µ        (3.26) 

the free variables for the inverse Monte Carlo simulations are left to only two: aµ  and g. 

Therefore, the optimization of parameters aµ , ( )s t aµ = µ −µ ,  and g is achieved through 

the inverse Monte Carlo simulations with the measured Rd and Td as additional inputs to 

minimize the error function  2δ

( ) ( )2 2
d d d d2 cal cal

d d

R R T T
R T

⎛ ⎞ ⎛− −
δ = +⎜ ⎟ ⎜⎜ ⎟ ⎜

⎝ ⎠ ⎝

⎞
⎟⎟
⎠

    (3.27) 

where  and (  are the calculated diffuse reflectance and transmittance. The 

iteration process for the inverse determination of 

( )d cal
R )d cal

T

sµ , aµ  and g stopped when 

, that corresponds to a relative error of about 1.4% for  and . 2 4 10−δ ≤ × 4 ( )d cal
R ( )d cal

T

The tactics that is practically found to be able to efficiently select the optimal 

values for ,  and g under the current circumstance is summarized in the following. 

In general, increase the value of 

sµ aµ

aµ  will decrease the sum of ( )d cal
R  and ( , increase 

the value of g will decrease the ratio of 

)d cal
T

( )d cal
R  and ( )d cal

T , and vice versa. After the 
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Monte Carlo simulation for the blind trial of sµ , aµ  and g, the priority is to choose a 

value of  that can reduce the difference between the sum of aµ ( )d cal
R  and  and the 

sum of the measured R

( )d cal
T

d and Td: if the sum of ( )d cal
R  and ( )d cal

T  is lager than the sum of 

the measured Rd and Td, select a lager aµ  for next run; otherwise choose a smaller aµ . 

When the difference between the sum of ( )d cal
R  and ( )d cal

T  and the sum of the measured 

Rd and Td is less than 0.01, the value of g is being adjusted to bring the ratio of ( )d cal
R  

and (  close to the ratio of the measured R)d cal
T d and Td. If the ratio of (  and )d cal

R ( )d cal
T  

is lager than the ratio of the measured Rd and Td, a lager g is picked up for the next run; 

otherwise a smaller one is selected. During the modification of g, the difference between 

the sum of  and (  and the sum of the measured R( )d cal
R )d cal

T d and Td may go up above 

0.01. Once this happens, switch to tune aµ  to bring it down. 

3.4   Modeling of Rough Surface in Monte Carlo Simulations 

In order to investigate the effect of the surface roughness of the tissue sample 

used in the optical measurements on the determination of the bulk optical parameters of 

tissue, the random Gaussian surface model was employed to generate the rough surfaces 

for modeled tissue samples in the Monte Carlo simulations.   
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3.4.1   The Random Gaussian Surface Model 

A random rough surface can be generated with a collection of the random 

variables ( ){ }Rζ
G

 as the surface height. Here, ( )R x, y=
G

 denotes the lateral coordinates 

of a surface position. At each point R
G

, surface height ( )Rζ
G

 is selected randomly from a 

set of possible values. Therefore, the collection of variables ( ){ }Rζ
G

forms a stochastic 

process, also called a random process. We first assume that the random process for the 

surface heights ( ){ }Rζ
G

 is a wide-sense stationary (WSS) process, which requires that (1) 

the mean value ( )Rζ
G

 must be independent of R
G

and (2) the correlation ( ) ( )R R 'ζ ζ
G G

 

between two variables,  and ( )Rζ
G ( )R 'ζ

G
, depends only on the difference ( ) .  R R '−

G G

Then we further assume that the height distribution function ( )p ζ  is a Gaussian 

distribution function: 

( )
2

2

1p exp
22

⎛ ⎞ζ
ζ = −⎜ ⎟δδ π ⎝ ⎠

     (3.28) 

and the correlation ( ) ( )R R 'ζ ζ
G G

 also follows a Gaussian function: 

( ) ( ) ( )22R R ' exp R R ' a2⎡ ⎤ζ ζ = δ − −⎢ ⎥⎣ ⎦

G G G G
   (3.29) 
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where δ is the root-mean-square (rms) height of the surface roughness and a is the lateral 

correlation length of the surface roughness describing the average lateral distance 

between the peak and valley in the surface profile.  With choosing  

( )R 0ζ =
G

       (3.30) 

the surface height can be expressed as 

( ) ( ) ( ) ( )21 22
1

2

2 R R 'aR 2 R ' exp dR
16 a

−
∞−

−∞

⎡ ⎤−⎛ ⎞ ⎢ζ = π δ Χ −⎜ ⎟ ⎢π⎝ ⎠ ⎢ ⎥⎣ ⎦
∫ '⎥

⎥

G G
G G G

   (3.31) 

where  is an uncorrelated Gaussian function defined by ( )RΧ
G

( )RΧ =
G

0        (3.32) 

( ) ( ) ( )R R ' R RΧ Χ = ∆ −
G G G G

'

)

     (3.33) 

and function  is the Dirac δ-function. In Eq. (3.29), the surface height is the 

convolution of  with a Gaussian function 

(R R '∆ −
G G

( )RΧ
G ( )G R

G
 that is defined by 

( )
1
22 2

2

aG R exp
16 a

−
2R⎡ ⎤⎛ ⎞

= δ −⎜ ⎟ ⎢ ⎥π⎝ ⎠ ⎣ ⎦

GG
    (3.34) 

If the Fourier transforms of ( )RΧ
G

 and ( )G R
G

 are denoted by  and ( )Qχ
G ( )g Q

G
 

respectively, 

( ) ( ) ( )1Q X R exp iQ R dR
2

χ = − ⋅
π ∫

G GG G G
     (3.35) 
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( ) ( ) ( ) ( )
2 21 221 ag Q G R exp iQ R dR a exp

2 8
⎛ ⎞

= − ⋅ = δ π −⎜π ⎝ ⎠
∫

GG G Q
⎟

G G G
 (3.36) 

we can find, by substituting Eqs. (3.33) and (3.34) into Eq. (3.29), 

( ) ( ) ( ) ( )

( ) ( )
2 2

1R g Q Q exp iQ R dQ
2
a a Qexp Q exp iQ R dQ
2 8

ζ = χ ⋅
π

⎛ ⎞δ π
= − χ ⋅⎜ ⎟π ⎝ ⎠

∫

∫

G G G GG G

G G G G G    (3.37) 

3.4.2   Rough Surface Generation 

Following the procedure proposed by Maradudin et al (1990) to numerically 

generate a surface profile, function ( )Rζ
G

 is sampled at a set of discrete points: 

, mx m x= + ny n y= +  with m,n 0, 1, 2,= ± ± …  where  and are the sampling steps 

along x and y coordinates respectively. Hence, the sampled values of functions 

x+ y+

( )Rζ
G

, 

, and  can be expressed as ( )X R
G ( )G R

G
( )mn m nx , yζ = ζ , , and 

 respectively.  

(mn m nX X x , y= )

)(mn m nG G x , y=

In order to implement Fast Fourier Transform, mnζ , as well as  and , is 

assumed to be a periodic function of m and n with period 2M and 2N 

mnX mnG

   mn (m 2M)n m(n 2N)+ +ζ = ζ = ζ      (3.38) 

Hence, the Fourier transform of ( )X R
G

 can be written as  
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M 1 N 1

uv mn
m M n N

1 X exp 2 i
2M 2N2 MN

− −

=− =−

mu nv⎡ ⎤⎛χ = − π +⎜
⎞
⎟⎢ ⎥⎝ ⎠⎣ ⎦

∑ ∑   (3.39) 

and the Fourier transform of  ( )G R
G

 can be written as 

M 1 N 1

uv mn
m M n N

1g G exp 2 i
2M 2N2 MN

− −

=− =−

mu nv⎡ ⎤⎛= − π ⎜
⎞+ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∑ ∑   (3.40) 

If now we introduce the representations 

1u
2 uq

2M x
π

=
+

        (3.41) 

2v
2 vq

2N y
π

=
+

       (3.42) 

Eq. (3.34) can be written as 

( ) ( )2 2 2
1u 2v

1u 2v

a q q
g q ,q a exp

8

⎡ ⎤+
⎢ ⎥= δ π −
⎢ ⎥⎣ ⎦

   (3.43) 

Therefore, from Eq. (3.35), we have 

( ) ( ) ( )1u

2 2 2M N
2v

m n uv 1u m 2v n
u M v N

a q qax , y exp exp i q x q y
82 MN x y =− =−

⎡ ⎤+δ π ⎢ ⎥ ⎡ ⎤ζ = χ − +⎣ ⎦⎢ ⎥⎣ ⎦
∑ ∑+ +

           (3.44) 

If we express  as uvχ

( r i
uv uv uv

1 i
2

χ = χ + χ )       (3.45) 

from Eqs. (3.30), (3.31), and (3.37), it follows that { }uv

rχ  and { }uv

iχ  are Gaussian 

variables with zero mean and a standard deviation of unity, they cab be generated by the 
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Marsaglia and Bray modification of the Box-Muller transformation of a pair of uniform 

deviates between zero and one [Stuart and Org 1987].  

3.4.3   Method for Surface Statistical Analysis 

A scanning confocal microscopy is used to map the surface profile of the sample 

used for optical measurements. The statistical properties of the rough surface are 

analyzed by a one-dimensional line surface profile randomly chosen within the two-

dimensional surface profile under study. 

3.4.3.1   Surface Profile Measurement Using a Confocal Microscope 

To measure the surface profile of a tissue sample, a laser scanning confocal 

microscope (LS510, Zeiss) is used which filters the reflected light spatially to form a 2D 

image with significantly reduced focal depth at a selected axial position. The unstained 

porcine skin dermis sample is sandwiched between two glass covers and brought to a 

position with its rough surface slightly below the focal plane of the microscope objective 

lens. And this z-position is later used as the reference point for the surface profile 

reconstruction. An image of 512×512 pixels is taken by scanning the focused laser beam 

in the x and y direction of the transverse plane with a step size of 0.45 µm and recording 

the reflected light signal at each scanned position to form an image pixel.  Then, the 

sample is translated one step closer to the focal plane of the microscope objective. 

Another image is recorded in the same fashion. This imaging procedure is repeated until 
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the sample is translated to the axial position where the lowest point of the sample surface 

is above the focal plane. The step size of z-scan is preset to be 0.2 µm. 

From the set of images acquired at different values of z, the reflected light signals 

acquired by the confocal microscope can be plotted as a function of z, I(z), for a fixed 

transverse position of (x, y). According to the confocal imaging model based on 

diffraction theory, described in Chapter 2, I(z) reaches a maximum value at z = ζ where 

the focal plane crosses the tissue sample surface because the index mismatch is maximal.  

This feature of I(z) provides the mean to determine the height of the sample surface at a 

transverse position (x, y) and, therefore, the surface profile function z = ζ(x, y), as shown 

in Fig3.1. The theory of confocal imaging depicted in Chapter 2 predicts that the reflected 

light signal decays monotonically at both sides around the image plane along the optical 

axis for any region being imaged [see Eq. (2.201)] and reaches maximum when the 

region being imaged is located at the surface where reflection tends to be larger. 

The confocal signals recorded in a 12-bit TIFF format correspond to 4096 gray 

scales. In an attempt to increase the accuracy of surface position determination, at each 

(x,y) point, the function I(z) is fitted to a Gaussian function. The surface profile function 

z = ζ(x, y) is then set to be the center position of the fitted Gauss function at which the 

maximum I is reached.   
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3.4.3.2   Surface Profile Statistics 

The surface profile function z = ζ(x, y) measured by using a scanning confocal 

microscope is a two-dimensional function of the surface height z sampled at evenly 

spaced intervals along the x and y directions within a finite region of  typically 

 230 230 m× µ

( ){ }mnz x m , y n= ζ = τ = τ      (3.46) 

where  and τ is the transverse sampling interval. To calculate the 

statistical properties of the rough surface profile, the ‘line statistics’ method [Stout et al 

1985] was adopted here. As shown in Fig 3.2, a one-dimensional surface profile was 

chosen each time from the two-dimensional surface profile by selection of the surface 

heights that have the same y value that is randomly selected 

m,n 0,1, , N= …

( ){ }iz i , y cons tan t= ζ τ =      (3.47) 

The reference position on the z coordinate is chosen randomly during the confocal 

imaging process.  In order to correctly calculate the surface statistical parameters, as 

pointed out by Bennett and Mattsson (1999), a constant was added to the one-

dimensional surface profile so that its mean value equals to zero  

N

i
i 0

z 0
=

=∑        (3.48) 
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The root-mean-square (rms) roughness δ is obtained as the square root of the mean value 

of the square of the surface height of all the sampled points on the one-dimensional 

surface profile [Elson and Bennett 1979] 

N
2
i

i 0

1 z
N 1 =

δ =
+ ∑       (3.49) 

To calculate the lateral correlation length a, we need to first obtain the 

autocovariance function  which measures the lateral correlation properties of the 

surface roughness. And function 

( )G w

( )G w  can be determined from the one-dimensional 

surface profile [Elson and Bennet 1979] 

( )
N w

i i w
i 0

1G w z z w 0,1,2, , N 1
N 1

−

+
=

= ⋅ =
+ ∑ … −   (3.50) 

Here the interval  is called the lag length. Then the lateral correlation length a, also 

called the autocorrelation length, is determined from the value of the lag length at which 

the autocovariance function drops to 1/e of its value at zero lag length. 

w ⋅ τ

Two additional parameters can be extracted from analysis of the height 

distribution function. For normal rough surfaces, height distribution functions generally 

show a Gaussian shape with its maximum at the mean surface level. This can be 

illustrated by comparison between the height distribution function and a Gaussian 

function, which is also called the equivalent Gaussian function that has the same under-

the-curve area and the same rms roughness as the height distribution function (Fig 4.2). 
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However, if a rough surface has some special features like large bumps or holes, these 

large deviation points tend to slightly raise or lower the mean surface level and shift the 

maximum of the height distribution function below or above the mean surface level (Fig 

4.4 and Fig 4.5). Besides, as long as the rms roughness (the second-order height average) 

is concerned, large deviation points have proportionally more weight than those closer to 

the mean surface level. Therefore, height distribution function will remarkably deviate 

from its equivalent Gaussian function (Fig 4.4 and Fig 4.5). 

In general, the higher order the height average is made, the more sensitive it is to 

the surface points lying far from the mean surface level. The skewness is introduced as a 

third-order measure of the asymmetry of a surface profile about the mean surface level 

and is defined as [Bennett and Mattsson 1999] 

N
3
i3

i 1

1 1Skewness z
N =

=
δ ∑      (3.51) 

A positive skewness reveals that large deviation points on the rough surface are 

proportionally above the mean surface level (like bumps) while a negative one shows 

opposite (like holes, deep scratches). 

The kurtosis is a fourth-order description of the peakedness or spikiness of height 

distribution function of a surface profile relative to Gaussian, and is defined as [Bennett 

and Mattsson 1999]  

   
N

4
i4

i 1

1 1Kurtosis z
N =

=
δ ∑ .     (3.52) 
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A perfect Gaussian height distribution function has a kurtosis of 3.  When a rough surface 

contains some special features lying far above or below the mean surface level, the 

kurtosis will be greater than 3. A kurtosis less than 3 means that the rough surface has 

proportionally fewer high or low extreme points than a Gaussian. 
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Figure 3.1 The schematic diagram that illustrates the
relationship between the reflected light intensity I recorded
by a confocal microscope and the focal point position of
the confocal microscope relative to the rough surface. 
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Figure 3.2 The schematic diagram to show how the one-
dimensional line surface profiles are chosen to perform the
statistical analysis. 
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Figure 3.3 Diagraph shows (a) A normal surface profile and (b) Its height
distribution function. The smooth curve in (b) is the equivalent Gaussian
function. 
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Figure 3.4 (a) A rough surface profile with bumps and (b) Its
height distribution function. The smooth curve is the
equivalent Gaussian function. 
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Figure 3.5 (a) A rough surface profile with holes and (b) Its Height
distribution function. The smooth curve in (b) is the equivalent Gaussian
function. 
 



Chapter 4   Experimental Methods 

In this chapter, the experimental designs are presented for the measurements of 

diffuse reflectance, diffuse transmittance and collimated transmittance for determination 

of optical parameters of turbid samples.  We also describe the methods for preparation of 

slab skin tissue samples and for determination of surface profile of the samples using a 

confocal scanning system. 

4.1   Methods for Optical Measurement 

The response of a turbid sample to light can be measured through its reflectances 

and transmittances. In principle, the reflected light from the sample can be divided into 

two parts: a specularly reflected portion that obeys the reflection law and a diffusively 

reflected portion that emerges from the sample bulk in the backward directions relative to 

the direction of incident light. The ratio of the reflected radiant flux or radiance integrated 

over the half space facing the incident surface of the sample to that of the incident light 

are defined as the specular reflectance Rs for the former and diffused reflectance Rd for 

the latter. These definitions are useful for slab samples with flat and smooth surfaces 

since the two portion of the reflected light can be separated from each other by their 

angular distributions and hence be measured accordingly. The inherent surface roughness 

of soft tissue samples, however, renders these definitions as useless because the two 

portions of the reflected light become increasingly mixed with each other as the surface 

roughness increases and sample thickness decreases.  In this dissertation, we define 

instead the specular reflectance Rs and Rd based on the integrating sphere method that 
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was used for measurements. Experimentally, as shown in Fig 4.1, the diffuse reflectance 

Rd is determined by dividing the reflected light flux from the turbid sample that does not 

escape the integrating sphere through the entrance port by that of the incident light.      

Likewise, the transmitted light from the sample can also be separated into two 

components: a collimated fraction that obeys the Beer’s law and a diffusively fraction 

that emerges from the sample in the forward directions relative to the direction of 

incident light. The ratio of the transmitted radiant flux or radiance integrated over the half 

space facing the exit surface of the sample to that of the incident light are defined as the 

collimated transmission Tc for the former and diffused transmittance Td for the latter. 

Like their counterparts, Rs and Rd, the above definitions for Tc and Td are experimentally 

meaningful for slab samples with flat and smooth surfaces. The collimated light comes 

out of the sample without being scattered inside the sample bulk and stays in its original 

track while the diffusively transmitted light tends to have a uniform angular distribution 

in the forward directions. Therefore, they can be distinguished from each other 

experimentally. Like the concerns for Rs and Rd, for samples with rough surfaces, the 

collimated light also increasingly mixes up with the diffusively transmitted light as the 

surface roughness and the sample thickness increase. In the similar way, the diffuse 

transmittance Td is defined as the ratio of the transmitted light flux from the turbid 

sample that does not escape the integrating sphere through the exit port to the incident 

light. By contrast, the collimated transmission Tc is defined as the portion of the incident 

light flux that leaves the integrating sphere through the exit port with a cone angle θc 
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relative to the direction of incident light.  θc is experimentally decided by the focal length 

f of the colleting lens and radius r of pinhole (see Fig.4.4 and Fig.4.7) 

1
c

rtan
f

− ⎛ ⎞θ = ⎜ ⎟
⎝ ⎠

      (4.1) 

For a lens of f = 100mm and a pinhole of r =0.05mm, θc = 5.0 × 10-5 rad. 

4.1.1   Integrating Sphere Measurements of Rd and Td

A reflective system has been constructed to measure the diffuse reflectance Rd 

and the diffuse transmittance Td of a turbid sample with an integrating sphere of 6 inch in 

diameter (IS-060-SF, Labsphere Inc.), as shown in Fig 4.2. This system was modified 

from a previous one with refractive optics (Du et al 2001) by replacing all the lenses with 

spherical mirrors to eliminate chromatic variation in the system over a wide spectral 

region. A 1/8 m monochromator of a 2 nm resolution (CM110, CVI Laser) with a 30W 

tungsten lamp used as a tunable light source to generate a beam with wavelength λ 

varying from 370 nm to 1610 nm. Two sets of photodiode and low-noise, high-gain 

preamplifier were constructed and used in two separate spectral regions to detect light 

signals with a lock-in amplifier (SR830, Stanford Research Systems Inc.): a Si 

photodiode for 370  and a InGaAs photodiode for 920 . 

The light out of the monochromator was modulated at 17 Hz by a chopper (SR540, 

Stanford Research Systems Inc.). A long-pass filter with the cut-on edge at 540nm in the 

nm 950nm≤ λ ≤ nm 1610nm≤ λ ≤
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former region and a long-pass filter with the cut-on edge at 840 nm in the latter region 

were used to remove the second-order diffraction from the monochromator. 

A turbid sample was sandwiched between two window glasses and was placed 

inside the integrating sphere at its exit port. The diameter of the entrance and exit ports is 

6.35 mm. The sample exposure area is of diameter of 14 mm. Three different positions of 

the integrating sphere were utilized to measure the diffuse reflectance Rd and the diffuse 

transmittance Td. To collect the diffuse reflected light signal IR from the turbid sample, 

the modulated light was sent into the integrating sphere through its entrance port and was 

incident normally on the sample (Fig 4.2a). Then the integrating sphere was rotated 1800 

relative to the position for the IR measurement. The modulated light went into the 

integrating sphere through its exit port and illuminated the sample and the diffuse 

transmitted light signal IT was collected (Fig 4.2b). By placing the integrating sphere 200 

relative the position for the IR measurement, the modulated light illuminated a part of the 

inner wall of the integrating sphere through its entrance port and a reference signal I0 was 

recorded (Fig 4.2c). The diffuse reflectance Rd and the diffuse transmittance Td were 

calculated from [Du et al 2001] 

0
R

d
0s

0 R

I cos 20R A(1 f ) I I cos 20
A

⋅
=

− ⋅ + ⋅ ⋅
    (4.2) 

d T
d

R

R IT
I
⋅

=        (4.3) 
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where A is the sphere surface area, As is the sample exposure area within the integrating 

sphere, and f  is the ratio of the total area of the integrating openings (e.g., the entrance 

port, the exit port and the detector port) to the sphere surface area A. 

The light beam out of the monochromator shows a diverging rectangular shape 

because of the shape of slit at the output of the monochromator. Practically it was found 

that one spherical mirror could only make diverged light beam out of the monochromator 

collimated in the short direction of the rectangle. In the long direction of the rectangle, 

the light beam was still divergent. Equations (4.2) and (4.3) were derived under the 

assumption that the incident light was completely collimated. The specular reflection Rc 

at the first glass-air interface left the integrating sphere through the entrance port 

completely (Fig 4.3a). However, for a diverged incident light, part of the specular 

reflection Rc will not escape the integrating sphere through entrance port and make a 

contribution to light intensity within the integrating sphere (Fig 4.3c). Likewise, as the 

collimated transmission Tc is concerned, the diverged incident light has the same effect 

(see Fig 4.3b and Fig 4.3d). By taking into account of effect of the incident beam 

divergence, the formulas to calculate Rd and Td is modified as 

( )0
R c

d
0s

0 R

I cos 20 m R 1 f I
R A(1 f ) I I cos 20

A

⋅ − ⋅ ⋅ −
=

− ⋅ + ⋅ ⋅

0⋅
     (4.4) 

( )d c T ,
d

R

R m R I
T

I
+ ⋅ ⋅

= cm T− ⋅      (4.5) 
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where m represents the fraction of the specular reflection Rc that does not leave the 

integrating sphere and m’ represents the portion of the collimated transmission Tc that 

does not escape the integrating sphere.  For a spherical concave mirror with a radius of 50 

mm used to collimate the diverged beam from the monochromator, experimentally we 

found that at the exit port the light spot extends two times longer in vertical direction 

while remains unchanged in the horizontal direction by comparison with the light spot 

size at the entrance port. Therefore, the value of parameter m’ is chosen to be 0.5. When 

the reflected light by the window glass at the exit port reaches the entrance port, it will 

become three times longer. Hence, the value of m is chosen to be 0.67. 

4.1.2   Spatial Filtering for Measurement of Tc

The system constructed to measure the collimated transmission Tc of a turbid 

medium sample was also based on the reflective optics, see Fig 4.4. A 1/8 m 

monochromator of a 2 nm resolution (CM110, CVI Laser) with a 30W tungsten lamp 

used as a tunable light source to generate a beam with wavelength λ varying from 370 nm 

to 1610 nm. Two sets of photodiode and low-noise, high-gain preamplifier were 

constructed and used in two separate spectral regions to detect light signals with a lock-in 

amplifier (SR830, Stanford Research Systems Inc.): a Si photodiode for 

 and a InGaAs photodiode for 920370nm 950nm≤ λ ≤ nm 1610nm≤ λ ≤ . The light out 

of the monochromator was modulated at 17 Hz by a chopper (SR540, Stanford Research 

Systems Inc.). A long-pass filter with the cut-on edge at 540nm in the former region and 
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a long-pass filter with the cut-on edge at 840 nm in the latter region were used to remove 

the second-order diffraction from the monochromator. 

A spherical concave mirror with a radius of 100 mm collimated the divergent 

light beam out of the monochromator. The collimated light emerging out of the turbid 

sample was collected by a spherical concave mirror of radius of 250 mm and focused on 

a slit of width of 0.5 mm. The photodiode recorded the light passing through the slit. 

A turbid medium sample was sandwiched between two flat window glasses and 

was exposed to the incident light with a circle area of diameter of 6.35 mm. And the 

transmitted light IC was measure behind the slit. A reference light I0 was measured with 

only two window glasses exposing to the incident light. Therefore, the collimated 

transmission Tc of a turbid sample was calculated from 

C
c

0

IT
I

=       (4.6) 

4.1.3   Speckle Effect 

The speckle occurs when a coherent light beam is scattered, via reflection or 

transmission, by a randomly structured sample.  The random structure of a sample can be 

either due to its turbid bulk property or surface roughness, or both, that fluctuates on the 

order of, or greater than the wavelength of the illuminating light [Francon 1979]. When 

such a sample is illuminated by a coherent beam, the intensity of the scattered light is 

found to vary randomly with position – this is known as objective speckle. When a rough 
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surface is illuminated by a coherent light and an image of the surface is formed, the 

image shows a similar random intensity variation, but in this case the speckle is called 

subjective. Speckles are caused by the random constructive or destructive interference 

between the diffuse scatterings of the coherent radiation. 

During the measurements of the collimated transmission Tc (see Fig 4.4 and Fig 

4.6), speckle effect may significantly change in the spatial distribution of light intensity 

near the focal point randomly and therefore reduce the repeatability and accuracy of the 

Tc measurements. The speckle-induced spatial distribution could affect the spatial 

filtering that is used to measure Tc with a pinhole placed at the focal point of the 

colleting lens to remove most of the scattered light.  This possibility can be investigated 

by the following method. 

Fig 4.5 shows an experimental setup used to investigate the speckle effect under 

the spatial filtering configuration. A collimated beam from a Nd:YAG laser with a 

wavelength of 1.064 µm and a diameter of 2.5mm was used to illuminates a rough turbid 

sample. A convex lens of 100 mm focal length is used to collect the light transmitted 

through the sample. A pinhole of 1mm diameter is placed at the focal point of the 

colleting lens and a photodiode detector is positioned right behind the pinhole. The 

pinhole and the detector were first aligned with incident light beam without the sample. 

The turbid sample and the detector with the pinhole are mounted on two translation 

stages, which can be moved in the lateral direction relative to the incident beam. Two 

measurements were carried out to evaluate the speckle effect on the Tc measurement. The 
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first measurement was to examine how the collimated transmission varies from place to 

place within the turbid sample. By moving the sample in the lateral direction, the 

collimated light signals were measured with the pinhole and detector aligned with the 

incident beam. The second measurement was to probe the light distribution in the focal 

plane of the signal colleting lens. By moving the detector and its pinhole laterally in the 

focal plane, the light intensity variations were measured with the position of the 

illuminated turbid sample unchanged.  

4.1.4   Combination of Integrating Sphere and Spatial Filtering Techniques 

The collimate-transmitted light signal is usually much weaker than the diffuse 

reflected or transmitted light signals because of the strong light scatterings by the turbid 

medium like skin tissues. When Rd and Td are measured under the experimental 

configuration described in section 4.1.1 for a typical sample thickness of 0.4 mm, the 

collimated transmitted light signal was far below the detectable level because of the 

relative weak light intensity of tungsten lamp used for the monochromator. For example, 

the diffuse reflectance Rd and the diffuse transmittance Td for porcine dermis sample with 

a thickness of 0.4 mm typically have values of 0.11 and 0.40 respectively while its 

collimated transmission Tc only has a value of 3.7 × 10-5 at a wavelength of 632.8 nm. 

The collimated light signal is about 10000 times weaker than the diffuse scattered light 

signals. Therefore, Tc measurement has to be carried out on different samples under the 

experimental configuration discussed in section 4.1.2 with small thickness typically less 

than 0.1 mm for skin tissues. For this purpose, skin tissue samples have to be frozen for 
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sectioning and the integrity of a skin tissue sample with thickness under 0.1 mm is 

significantly reduced in comparison to the thick tissue samples sectioned freshly.  

Furthermore, the thickness measurements of thin slab tissue samples have larger 

uncertainty than those of thick samples because of the plasticity of the tissue samples. As 

a result, the attenuation coefficient µt determined from Tc from different thin cryo-

sectioned samples have large uncertainty and may not correspond to the Rd and Td 

measured from thick freshly sectioned samples. 

In an attempt to measure Rd, Td, and Tc from the same sample, we use laser beams 

to increase the incident light intensity to improve the collimated light signal. Seven lasers 

are employed to provide CW beams at eight wavelengths:  325 nm and 433 nm from a 

Cd-He laser (Series 56, Omnichrome), 632.8 nm from a He-Ne laser (05-LHP-143, 

Melles Groit), 532 nm from a SHG Nd: YAG laser, 1640 nm from a Nd: YAG laser, 855 

nm, 1310 nm, and 1550 nm from three diode laser. Fig 4.6 shows the experimental setup. 

The laser beam was first expanded and collimated to 6mm in diameter through two 

convex lenses with focal length of 50 mm and 200 mm respectively. Then the expanded 

laser beam was brought into the integrating sphere. Within the integrating sphere, Rd and 

Td were determined the same way as in section 4.1.1. Meanwhile, the collimate-

transmitted light signal left the integrating sphere through its exit port and was collected 

by another convex lens with a focal length of 100 mm and a pinhole of 1 mm in diameter 

placed at its focal point. The diameter of the entrance and exit ports of the integrating 

sphere was reduced from 6.35 mm to 3mm. And the diameter of the sample exposure 

area was reduced from 14 mm to 6mm. The incident light was modulated at 17 Hz by a 
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chopper. The Rd, Td, and Tc signals were measured with a lock-in amplifier. Fig.4.7 

displays schematics of sample holder. 

The significance of measuring Rd, Td, and Tc from the same sample lies in the fact 

that the inverse Monte Carlo determination of µs,µa, and g is based on the precise 

knowledge for a specific sample. In contrast, if only Rd and Td are measured for a sample, 

the inverse Monte Carlo determination of µs,µa, and g based on Rd and Td has to resort on 

a priori knowledge of µt (=µs+µa), which comes from the average of Tc measurements of 

many different samples. For a specific sample, the sample-averaged µt may not reflect its 

attenuation accurately. And the inverse Monte Carlo simulations based on Rd, Td and µt 

may end up with a set of µs,µa, and g with large deviations. Furthermore, for samples 

with large quality variations, the large uncertainty in µt determination may fail the inverse 

Monte Carlo determination of µs,µa, and g because the search of µs or µa limits by µt.  

4.2   Weak Signal Detection and Data Acquisition 

The strong light scattering and absorption within a turbid medium make the 

experimental investigations often incur weak light signal detections. The technology 

advance over the recent years has dramatically improved the performance of photodiodes 

and operational amplifiers. Photodiode, combined with the preamplifier based on the 

operational amplifier and the lock-in amplifier, provides a solution for the low-noise, 

high-sensitivity weak signal detection.  
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4.2.1   High-Gain Preamplifier Design 

Si photodiodes (S1336-44BQ, Hamamatsu) were used to detect light signals 

within the spectral range from 190 nm to 1100 nm and InGaAs photodiodes (FGA10, 

Thorlabs Inc.) were used to measure light signals within the spectral range from 800 nm 

to 1800 nm. Table 4.1 lists their characteristic parameters.  

The photodiode is operated either in the current source mode without a bias 

voltage or in the reverse bias mode. The response of the diode has a linear relationship to 

the light energy received. Fig 4.8 shows the circuit details of the preamplifier [Ronnow 

and Veszelei 1994]. The output voltage of the amplifier is proportional to the 

photocurrent from the diode with a gain factor determined by the product of the feedback 

resistor Rf and M (= R1/R2). Here M is an extra gain that is brought up by reducing the 

feedback voltage through the resistive divider. Under the current selections of resistors, 

the amplifier produces a total transimpedance gain of 1011 (V/A). The cut-off frequency 

of the low-pass filter at the output end of the amplifier is 50 Hz.  

4.2.2   Lock-in Detection Principle 

Lock-in amplifier is widely used in research and engineering to detect and 

measure very small AC signals. Precise measurements can be realized even when the 

small signal is obscured by noises thousands of times larger. Lock-in amplifier use a 

technique known as phase-sensitive detection to single out the signal at a specific 
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reference frequency and phase. Noise signals at frequencies other than the reference 

frequency are rejected and have no effect on the measurement. 

For lock-in measurements, a reference frequency is required. Assume that the 

frequency reference signal is a square wave at frequency ωr, as shown in Fig 4.9. The 

signal that we attempt to measure can be modulated at the reference frequency ωr. 

Assume further that the modulated signal has the sin waveform:  where 

 is its amplitude and  is its phase. 

( )sig r sigV sin tω +θ

sigV sigθ

Firstly, the lock-in amplifier utilizes a technique called phase-locked-loop to lock 

the internal reference oscillator to the frequency reference signal provided to the lock-in 

amplifier, resulting in a sine wave known as the lock-in reference at frequency ωr with a 

fixed phase shift of : refθ ( )ref r refV sin tω + θ  where  is the amplitude of the lock-in 

reference. Secondly, the lock-in amplifier amplifies the modulated signal and multiplies it 

by the lock-in reference using a phase-sensitive detector (PSD) or multiplier. The result 

of PSD s 

refV

PSDV  i

( ) ( )

( ) ( )
PSD sig r sig ref r ref

sig ref sig ref sig ref r sig ref

V V sin t V sin t

1 1V V cos V V cos 2 t
2 2

= ω + θ × ω + θ

= θ −θ − ω + θ + θ
  (4.7)  

Thirdly, when PSD output  is passed through a low-pass filter, the AC signal is 

removed. And the filtered PSD output 

PSDV

PSDV  is  
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(PSD sig ref sig ref
1V V V cos
2

= θ )− θ     (4.8) 

This is a DC signal proportional to the signal amplitude that we attempt to measure. 

Now suppose that the input to the lock-in amplifier is made up of signal plus 

noise. The PSD and the low-pass filter only detect signals whose frequencies are very 

close to the reference frequency. Noise signals with frequencies far away from the 

reference frequency are blocked by the low-pass filter because they are still AC signals 

after PDS. Noises at frequencies very close to the reference frequency result in very low 

frequency AC outputs from PSD. Their attenuation depends on the bandwidth of the low-

pass filter.  

The low-pass filter bandwidth of the lock-in amplifier is determined by setting the 

time constant on the front panel. The time constant is ( )cut off1 2 f −π  where  is the –

3dB frequency of the low-pass filter. The low-pass filters are 6 dB per octave roll off 

(also called the slope), RC type filters. The output of the low-pass filter is expected to be 

a DC signal. Therefore a small time constant that corresponds a narrow bandwidth is 

desirable. However, the noise signals at the input of the low-pass filter tend to induce 

more fluctuations on the DC signal with a narrower bandwidth. By increasing the time 

constant, the output becomes more steady. But the trade-off is the low-pass filter takes a 

relative long time for a variation in the input signal to be reflected in its output. Typically 

a single RC filter requires about 5 time constants to settle to its final value. The time 

constant reflects how slowly the output of low-pass filter responds a change in its input. 

cut offf −
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There are four successively low-pass filters for each PSD resulting in a roll off or 

slope from 6 dB up to 24 dB. An increase in the slope can help reduce the time constant 

needed to reach a stable output of the low-pass filter.    

To determine the background noise in a measurement with the lock-in amplifier, 

we simply block the incident light getting into the measuring system. There is no 

modulated incident light illuminating the sample. The detector picks up the 

environmental radiation. For a detector that has a preamplifier with a 1010 gain, the lock-

in amplifier typically has a reading within 100 µV range and a varied phase angle with a 

time constant of 300 ms and a slope of 24 dB. When a measurement is performing, the 

intensity of the modulated light is adjusted so that the lock-in amplifier has a reading 

above 1 mV and a stable phase angle. Therefore, the signal-to-noise ratio at most of 

situation is lager than 10.  

4.3   Sample Preparation 

The optical properties of two types of turbid media were experimentally and 

theoretically investigated in this dissertation: aqueous suspensions of polystyrene 

microspheres and the porcine dermis tissue. The preparation techniques are described 

below. 

4.3.1   Skin Tissue Structure 

Skin tissue is composed of two major layers: epidermis and dermis (Fig 4.10). 

The epidermis forms the external surface of the skin and mainly consists of keratinocytes 
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which differentiate to form 4 layers: the Stratum Basale (basal layer), the Stratum 

Spinosum (prickle or squamous cell layer), the Stratum Granulosum (granular layer), and 

the Stratum Corneum (corneal layer). The basal layer is the innermost layer of epidermis. 

This layer houses one layer of small round cells called basal cells. Basal cells attach to 

the basement membrane which separates the epidermis layer from the underlying dermis 

layer. These cells constantly divide with the new cells constantly pushing older ones on a 

migration toward the surface of the skin. The basal layer also contains melanocytes, 

which produce a pigment called melanin.  Above the basal layer is the prickle cell layer. 

Here lie the basal cells that have been pushed up from the basal layer. These mature basal 

cells are now called the prickle cells, or keratinocytes. Protein synthesis occurs in this 

layer, producing a fibrillar protein keratin, a tough, protective protein that makes up of a 

large part of the structure of the skin, hair, and the nail. Keratin aggregates to form 

tonofibrils. These tonofibrils migrate into its above layer called the granular layer. In the 

granular layer, each keratinocyte contains basophilic keratohyalin granules. The protein 

filaggrin is the major component of these granules. These granules bond to the keratin 

filaments, which evolved from the tonofibrils to form the keratin complex. Within the 

outmost layer, the corneal or horny layer, keratinocytes enlarge, flatten, and bond 

together, then eventually become dehydrated and die.   The thickness of epidermis varies 

between 50 µm and 150 µm [Anderson et al 1981]. 

Dermis lies beneath epidermis and consists of the dense fibro-elastic connective 

tissues. Its main components are collagen and elastin. Several structures are also found in 

the dermis: the sweat glands, the sebaceous glands, nerve endings, hair follicles, blood 
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and lymph vessels. The dermis layer is divided into 2 layers: the papillary dermis and the 

reticular dermis. The papillary dermis is a thin junction layer immediately beneath 

epidermis. It is composed of the interlocking rete ridges and dermal papillae. The 

reticular dermis extends most of dermis. It is mad up mainly of fibrous proteins. Collagen 

is its main structural component accounting for 70% of the dry weight of skin. Bundles of 

collagen molecules pack together and are responsible for the skin’s strength. Collagen 

fibers are composed of thinner microfibrils. There are two major types of collagens. Type 

I collagen fibers are arranged in a dense orthogonal network up to 15 µm wide. Type I 

collagen microfibrils have a distinctive cross banding with a periodicity of 68 nm. Type 

III collagen also called reticulin. Another fibrous protein is elastin, which gives skin its 

elasticity. Elastin fibers constitute about 3% of the dry weight of the skin. A variety of 

cells are scattered inside the dermis. These cells are fibroblasts (synthesize collagens and 

elastin), histiocytes, mast cells, lymphocytes, Langerhan’s cells. In average, the dermis is 

about 3 mm thick. Underneath the dermis, there is a subcutaneous layer or hypodermis, 

which contains mainly the adipose (fat) tissues. It acts as a protective cushion to the skin. 

4.3.2   Porcine Dermis Sample Preparation 

Porcine skin has a structure that shows the closest similarity to that of the human 

skin among mammals and has been widely used as the model of human skin [Lavker et al 

1991]. Large patches of full-thickness skin  (about 10cm by 10cm) were removed from 

the back of the neck of 6-month-old white domestic pigs at the Department of 

Comparative Medicine, Brody School of Medicine, East Carolina University after the 
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animals were sacrificed for medical classes.  Immediately after the removal from the 

animal, the skin tissue was kept within the crushed ices in an ice bucket. And the ice 

bucket was stored in a refrigerator with the temperature maintained around 20 C to 40 C.  

Two methods were employed to obtain the porcine dermis samples: fresh tissue 

sectioning and frozen tissue sectioning. For the fresh tissue sectioning, a 20 mm square of 

porcine skin tissue was glued (super glue or cyanoacrylate) on a specially designed 

microtome on its epidermis at room temperature. The dermis samples were sectioned 

with a small razor blade and the thicknesses of sectioned dermis samples ranged from 

0.2mm to 1.0 mm. The whole processing period lasted typically about 10 minutes. For 

the frozen tissue sectioning, the skin tissue specimen of about 20×20 mm2, covered by 

OTC to preserve its biological activity (Lembares et al 1997), were frozen at a 

temperature of –180 C. We used an Ames Lab-tek cryostat microtome to section the skin 

tissue to obtain dermis samples with thickness in a range from 0.03 mm to 0.2 mm. Each 

frozen dermis sample was warmed up to the room temperature in physiological saline 

solution. 

A micrometer with a precision of 0.003 mm was used to measure the thickness of 

a sample sandwiched between two optical windows of known thickness. For each sample, 

its thickness was measured five times successively and the averaged value was used as 

the sample thickness. 
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4.3.3   Polystyrene Microsphere Suspensions Preparation 

Polystyrene microspheres of diameter of 0.966 µm were purchased as a 

suspension in deionized water with a nominal concentration of 10% by weight (5095B, 

Duke Scientific Corporation). By diluting with deionized water, we prepared three 

different microsphere suspensions with nominal number densities of 6 31.108 10 mm−× , 

, and 62.056 10 mm−× 3 365.054 10 mm−×  based on the nominal concentration of the 

original suspension from the manufacturer.  

Since the suspension concentration is a critical factor in determination of the 

absorption and scattering coefficients for suspensions from the Mie derived absorption 

and scattering cross sections for a single microsphere, values of the suspension 

concentrations have to be measured. A small portion of each prepared microsphere 

suspension was weighed by an electronic balance with a resolution of 0.1 mg. Then the 

water in the suspension was evaporated completely at 600C to obtain the dry 

microspheres to have their mass measured. The number densities of the three polystyrene 

suspensions were calculated from the masses of the microspheres and suspensions, the 

diameter of microsphere  (=0.966 µm), and polystyrene mass density (= 1.05 g cm-3). 

And these were found to be 6 31.569 10 mm−× , 62.709 10 mm 3−× , and 6 36.186 10 mm−× , 

respectively.   



 91

4.4   Scanning Confocal Imaging System 

A scanning confocal imaging system was constructed to map the surface profile 

of skin tissue samples used for measurements of its optical properties (Fig 4.11).  The 

laser beam of wavelength 632.8nm was expanded and collimated through two convex 

lenses and a 100 µm pinhole (P1 in Fig 4.11). The collimated laser beam was focused 

through a 63×, 0.85 NA microscope objective (160/0.17, Melles Griot) (Objective A in 

Fig 4.11) and fell on the sample surface. The sample was mounted on a PZT (HPSt 1000, 

Piezomechanik GmbH), which was fixated on a translation stage controlled by a stepping 

motor. With the help of the computer-controlled PZT, the sample can move in the vertical 

direction in a range of 0 –17 µm in steps as small as 0.02 µm. The computer-controlled 

stepping motor drove the translation stage to make a line scan in the x direction with 

steps as small as 0.15 µm. The reflected light was separated by a 10% splitter and was 

collected by another 63×, 0.85 NA microscope objective (160/0.17, Melles Griot) 

(Objective B in Fig 4.11). A 10 µm pinhole mounted right before a photodiode was 

placed on the focal point of Objective B to detect the reflected light signal. The light was 

modulated at 17 Hz by a chopper (SR540, Stanford Research Systems Inc.). A lock-in 

amplifier (SR830, Stanford Research Systems Inc.) was used to measure the photodiode 

signals. At each point, a z-scan was conducted through the PZT. Then the translation 

stage moved to next position through stepping motor. A computer monitored the whole 

process including x and z scans and data acquisitions.  
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The diameter of pinhole P2 plays an important role in determining the resolutions 

of the confocal imaging. The diffraction-limited focus spot or “Airy disk” decides the 

lateral resolution of confocal microscope, which has a diameter of 

Airy
1.22d
NA

λ
= .      (4.9) 

If the pinhole diameter DPH > 1 × dAiry, the lateral resolution is given by the Full 

Width at Half Maximum of Airy disk [Visscher and Struik 1994]: 

50%
0.51W

NA
⋅λ

≈ ,     (4.10) 

and the axial resolution (in the optical axis direction) is a function of pinhole diameter: 

2 2

PH
50% 2 2

0.45 2 n DZ
NAn(1 1 NA n

⎛ ⎞ ⎛ ⎞λ ⋅ ⋅⎜ ⎟= + ⎜⎜⎜ ⎟− − ⎝ ⎠⎝ ⎠
⎟⎟

7

.   (4.11) 

where NA is the numerical aperture of objective. For example, when µm and 

NA = 0.85, µm; when 

0.6328λ =

50%W 0.3= 0.488λ = µm and NA = 0.85, µm; when 

µm and NA = 1.30, 

50%W 0.2= 9

90.488λ = 50%W 0.1= µm. 

When the diameter of pinhole P2 is less than 0.25×dAiry, the lateral resolution 

becomes: 
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50%
0.37W

NA
⋅λ

≈ ,     (4.12) 

and the axial resolution is given by [Gordon and Timothy 1989] 

50% 2 2

0.45Z
n(1 1 NA n

λ
=

− −
,    (4.13) 

where n is the refractive index of the immerging medium for the objective. For Carl Zeiss 

LSM 510 Confocal Laser Scanning Microscope with a 40×/1.3 objective, the overall 

magnification of the imaging and detection optical system is 132, therefore, the diameter 

of pinhole P2 that corresponds to 1 × dAiry is 60.8µm. For confocal microscope we 

constructed, 3 µm, 10µm, 25µm, 75µm, 100µm pinholes were tested and 10 µm showed 

the good signal-noise ratio and good axial resolution. 
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Figure 4.1 Diagraph showing the definitions of the diffuse
reflectance Rd, the diffuse transmittance Td and the collimated
transmission Tc. 
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Figure 4.2 Schematics for measurement of (a) the diffuse transmittance Td
and  (b) the diffuse reflectance Td and (c) the reference. 
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Figure 4.3 Differences between collimated incident beam and diverged
incident beam. (a) and (b) are the collimated incident beam for the specular
reflection Rc and the collimated transmission Tc respectively; (c) and (d) are
the diverged incident beam for the specular reflection Rc and the collimated
transmission Tc respectively. 
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Figure 4.4 Experimental setup for measurement of the
collimated transmission Tc with two concave mirrors
M1 and M2. 
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Figure 4.5 Experimental setup to investigate the speckle effect in Tc
measurement. L1 and L1 are two convex lenses to expand the laser
beam; PH1 is an aperture with a diameter of 2.5 mm; L3 is light
colleting convex lens with a focal length of 100 mm; PH2 is a
pinhole with diameter of 1 mm. Both sample and detector set
(detector plus pinhole PH2) can move in the lateral direction shown
as arrow in graph.     
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Figure 4.6 Experimental setup for measurements of Rd, Td and Tc
on a same sample.  
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Figure 4.7 Sample holders for integrating sphere: (a) for Rd, Td, and Tc 
from the same sample; (b) for Rd and Td only. 
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Figure 4.8 Circuit of preamplifier. 
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Figure 4.10 The Structure of skin tissue (adapted from http://skincancer.dermis.net). 
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Figure 4.11 Schematics of the scanning confocal imaging system. P1 is 
a 100 µm pinhole, P2 is a 10 µm; Not shown above, the sample is 
mounted on the top surface of PZT and PZT is placed on a translation 
stage moved by a stepping motor.  
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Table 4.1 Parameters of Si and InGaAs photodiodes. 

 

 

 Si photodiode InGaAs photodiode 

Active area (mm2) 3.6 × 3.6 1.0 × 1.0 

Spectral response range (nm) 190 to 1100 800 to 1800 

Peak wavelength (nm) 960 -------- 

Photo sensitivity (A/W) 0.5 ------- 

Maximum dark current (nA) 0.05 100 

Shunt resistance (GΩ) 0.6 ------- 

Rise time (µs) 0.5 5.0 

Terminal capacitance (pF) 150 85 

 
 



Chapter 5    Results 

In this Chapter, we summarize the results of the inversely determined parameters 

that characterize the optical properties of polystyrene microspheres and porcine dermis 

tissue in vitro. The calibrations of the experimental systems and the validations of the 

Monte Carlo codes are first presented. The complex refractive index of polystyrene 

microspheres and the values of µs, µa, and g for porcine dermis tissue have been 

determined without considering the sample surface roughness in a spectral region 

between 370 nm and 1610 nm. The effects of surface roughness on the inverse 

determination of the bulk optical parameters were studied through numerical 

investigations and experimental measurements on intralipid solutions.  The surface 

roughness of fresh porcine dermis samples were measured and the µs, µa, and g were 

determined by taking into account of tissue surface roughness at eight wavelengths 

between 325 and 1550nm.  

5.1   Calibration of Optical Setups and Validation of Codes 

The optical systems to measure the diffuse reflectance Rd and the diffuse 

transmittance Td were calibrated with the reflection standards. The calibration of the 

spatial filtering systems for the collimated transmission Tc measurements was established 

by comparison between the measured attenuation coefficient µt and µt calculated from 

Mie’s theory based on the known optical and geometrical parameters for a polystyrene 

microsphere suspension. The Monte Carlo codes that we developed to simulate light 
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transportation within a turbid medium with flat or rough interfaces were validated by the 

comparison of the attenuation coefficient µt derived from the linear regression of the 

Monte Carlo produced ln (Tc) at different sample thickness based on the preset 

parameters, µs, µa, and g with the preset µt (= µs+µa).  

5.1.1   Calibration of Integrating Sphere Setup 

The reflective optical system with an integrating sphere employed to measure the 

diffuse reflectance and transmittance, Rd and Td of a turbid sample, as well as the data 

process method (see section 4.1.1) has been calibrated via two diffuse reflection 

standards of 50% and 40% (SRS-50-010 and SRS-40-010, Labsphere Inc.) from 370 nm 

to 1700 nm. We also calibrated the experimental systems from 200 nm to 420 nm. Fig 5.1 

plots the measured reflectances of 50% and 40% reflectance standards in comparison 

with the manufacturer’s calibrated values between 370 nm and 1700nm. Fig 5.2 displays 

the measured reflectances of 50% and 40% reflectance standards in comparison with the 

manufacturer’s calibrated values from 200 nm to 420nm. Based on these results, we 

estimated that the experimental errors in measured Rd and Td were within ±5%. 

Fig 5.3 shows the transmissions of two longpass filters with cut-on edges at 540 

nm and 840 nm respectively.  
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5.1.2   Calibration of Spatial Filtering Setup 

To calibrate the spatial filtering experimental setup (Fig 4.4), we measured the 

collimated transmission Tc of a polystyrene microsphere suspension at number density of 

for three sample thicknesses: 0.102 mm, 0.150 mm, and 0.246 mm 

with a collimated beam from a He-Ne laser at the wavelength of 632.8 nm. The 

attenuation coefficients µ

6
spc  = 6.186 10  mm× -3

t was determined by a linear regression of ln (Tc) and was found 

to be 10.7 mm-1, as shown in Fig 5.4. 

On the other hand, from the known microsphere’s diameter of 0.986 µm and the 

published polystyrene refractive index of 1.5867 at 632.8 nm [Nikolov 2000], Mie’s 

theory predicts that the attenuation coefficient µt equals 11.1 mm-1 for this polystyrene 

microsphere suspension. By comparison, we conclude that µt determined by the optical 

system we constructed to measure the collimated transmission Tc reveals an excellent 

agreement with Mie’s theory and has a relative error of 4%. 

5.1.3   Speckle Effect  

A patch of fresh-cut porcine dermis sample of 2 × 2 cm2 was employed in the 

study of the speckle effect on the collimated transmission Tc measurement (see section 

4.1.3). The thickness of the dermis sample used is 0.54 mm.  The dermis sample was 

sandwiched between two window glasses. The experimental setup employed to evaluate 

the speckle effect is presented in Fig 4.5, which is similar to spatial filtering configuration 

used to measure Tc. Fig.5.5 (a) shows the variation of the collimated transmission when 
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different parts of the dermis sample were illuminated in the lateral direction relative to 

the incident light by moving the dermis sample 0.5 mm each time. Fig.5.5 (b) displays 

the light distribution in the focal plane of the signal colleting lens by moving the pinhole 

and the detector in the lateral direction with a step size of 0.5 mm.   

As being discussed in section 4.1.3, speckles result from the randomly 

constructive or destructive interferences between scatterings of the illuminating light at 

rough surface and in the bulk, and between scatterings and the collimated light. Taking 

into account of the fact that the optical properties of the dermis sample itself may 

fluctuate from location to location, results shown in Fig 5.5 suggest that the pinhole at the 

focal point of the colleting lens effectively remove majority of diffuse scatterings and the 

speckle effect, if still exist, does not tends to severely affect Tc measurement under the 

current experimental condition. 

5.1.4   Validation of the Monte Carlo Codes 

Numerical “experiments” were conducted in an attempt to validate the Monte 

Carlo codes developed to simulate the propagation of photons through a turbid medium 

with flat or rough surfaces.  We used six different kinds of turbid media in the validation: 

two sets of optical parameters:  (µs = 5.0 mm-1, µa = 0.02 mm-1, g = 0.7) and (µs = 10.0 

mm-1, µa = 0.02 mm-1, g = 0.7) were selected to model two types of the turbid medium 

bulk and its surfaces were assumed either flat or rough with two different kinds of 

roughness characterized by two sets of parameters: (δ = 0.5 µm, a = 10 µm) and (δ = 1.0 

µm, a = 10 µm). Here δ stands for rms height variation of a rough surface and a is its 
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lateral correlation length. The refractive index for all the modeled turbid media was set to 

be 1.325. Monte Carlo simulations were conducted to calculate the collimated 

transmission Tc for each modeled sample in the slab configuration sandwiched between 

two flat window glasses with a refractive index of 1.509. The sample thicknesses for the 

Tc simulations were set as 0.05 mm, 0.1 mm, 0.2 mm, 0.3 mm, 0.4 mm, and 0.5 mm. The 

results of Monte Carlo simulated Tc are displayed in Fig 5.6. Linear regressions of the ln 

(Tc) were carried out to unearth the corresponding attenuation coefficient µt for each 

modeled turbid medium. For flat surfaces, Tc–derived µt is 5.026mm-1 for the modeled 

bulk optical parameters (µs = 5.0 mm-1, µa = 0.02 mm-1, g = 0.7) and 10.029mm-1 for the 

modeled bulk optical parameters (µs = 10.0 mm-1, µa = 0.02 mm-1, g = 0.7) (red group in 

Fig 5.6). For rough surfaces with (δ = 0.5 µm, a = 10 µm), Tc–derived µt is 5.013mm-1 for 

the modeled bulk optical parameters (µs = 5.0 mm-1, µa = 0.02 mm-1, g = 0.7) and 

9.851mm-1 for the modeled bulk optical parameters (µs = 10.0 mm-1, µa = 0.02 mm-1, g = 

0.7) (blue group in Fig 5.6). For rough surfaces with (δ = 1.0 µm, a = 10 µm), Tc–derived 

µt is 4.996mm-1 for the modeled bulk optical parameters (µs = 5.0 mm-1, µa = 0.02 mm-1, 

g = 0.7) and 9.844mm-1 for the modeled bulk optical parameters (µs = 10.0 mm-1, µa = 

0.02 mm-1, g = 0.7) (pink group in Fig 5.6). By comparison, we found that the Monte 

Carlo codes successfully recovered the preset µt (= µs + µa) under either flat or rough 

surface conditions and thus validated. 
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5.2   The Complex Refractive Index of Polystyrene Microsphere. 

The complex refractive index, rn n i ni= + , of polystyrene microspheres were 

determined from the measurements of the diffuse reflectance Rd and diffuse transmittance 

Td of the polystyrene microsphere suspensions. The derivation of  and  was based 

on the Monte Carlo simulation which was similar to the previous one used to determine 

the optical parameters (µ

rn in

s, µa, g) from tissue sample [Peters et al 1990, Du et al 2001]. 

The main modifications introduced were the choice of Mie’s phase function, instead of 

Henyey-Greenstein function as the scattering phase function, and a new procedure to 

sample the scattering angles according to Mie’s phase function (see section 3.2). 

5.2.1   Experimental Method 

Three different polystyrene microsphere suspensions were under our 

investigations, which have number densities of 6 31.569 10 mm−× , 62.709 10 mm 3−× , and 

 respectively (see section 4.3.3). All the suspension samples were 

examined under an optical microscope to make sure that the microspheres were not 

clustered together. Every sample was rigorously shaken before the start of measurements 

to ensure the homogeneity of the suspension. A suspension sample of polystyrene 

microspheres was contained within a spacer that covered by two sapphire windows of 0.5 

mm thick. The diffuse reflectance R

66.186 10 mm−× 3

d and diffuse transmittance Td for each polystyrene 

microsphere suspension were measured at wavelengths λ between 370 nm and 530 nm 

with a step size of 10 nm and between 530 nm and 1610 nm with a step size of 30 nm by 
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a system described in section 4.1.1. The sample thickness for the Rd and Td 

measurements has the same value of D = 0.246 mm for three polystyrene microsphere 

suspensions.  

For the purpose of validation of the integrating measurements and the Monte 

Carlo based inverse calculations, the collimated transmission Tc was measured for a 

suspension sample of csp = 6.186×106 mm-3 with a system described in section 4.1.2. 

Three different sample thickness values of D = 0.112 mm, 0.246mm, 0.463 mm were 

used to obtain the dependence of ( )cln T on D at the same sequence of wavelength steps. 

The attenuation coefficient µt was derived from the slope at each wavelength 

( )c
t

ln T
D

∆
µ = −

∆
     (5.1) 

All the measurements of Rd, Td, and Tc were conducted at room temperature of 

about 24 0C. The experimental errors were estimated to be ±5% for Rd and Td and ±3% 

for Tc. 

5.2.2   Modelling Method  

The optimal values of  and  were approached through the Monte Carlo 

simulations and optimization iterations with a least-square criterion. For a set of trial 

values of  and , the scattering cross section σ

rn in

rn in s, the absorption cross section σa, and 

the scattering phase function ( )θp  of a sphere were firstly calculated from the Mie 
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theory (see section 2.2) with the known diameter of sphere (= 0.966 µm) and the 

published complex refractive index of water w rw in n i n w= +  [Hale and Querry 1973]. 

Here  is also called Mie’s phase function where θ is the scattering angle. Then we 

assume that the optical responses of a suspension, the scattering coefficient µs and the 

absorption coefficient µa, are related to the scattering and absorption cross sections, σ

( )p θ

s 

and σa of a single sphere through 

           (5.2)  s spcµ = ⋅σs

w        (5.3) a sp a acµ = ⋅σ + µ

where  is the number density of the microsphere suspension and spc aw iw4 nµ = π λ  is the 

absorption coefficient of the water at wavelength λ. The above assumption is based on 

the dominance of single scattering regime in light transportation through the suspension 

samples of small microsphere concentration. Subsequently, with a Monte Carlo code that 

has been validated extensively [Song et al 1999, Du et al 2001], the diffuse reflectance 

and transmittance, (  and )d cal
R ( )d cal

T , were obtained through accurately tracking the 

incident photons according to the suspension’s optical parameters (µs, µa, and ( )θp ), the 

sample’s geometry, the sapphire windows, and the integrating sphere. The iteration 

process for inverse determination of  and stopped when an error function Σ defined 

as 

rn in
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( ) ( )2 2
d d d dcal cal

d d

R R T T
R T

⎛ ⎞ ⎛− −
Σ = +⎜ ⎟ ⎜⎜ ⎟ ⎜

⎝ ⎠ ⎝

⎞
⎟⎟
⎠

    (5.4)  

satisfied the condition: . We employed a value of cΣ ≤ Σ 44 10−× for Σc, which 

corresponds to a relative error of about 1.4% for ( )d cal
R  and ( )d cal

T . 

In the region of 370nm 950nm≤ λ ≤ , water was treated as a transparent 

immersion medium, i.e. without absorption. The Mie calculations for the Monte Carlo 

simulations were carried out using a version of Mie code for transparent immersion 

medium [Bohren and Huffman 1983]. Since water shows an absorption peak near λ = 

1450 nm, a version of the Mie code for absorbing immersion medium had been 

developed [Yang et al 2002] and was used in our study to generate µs, µa and p(θ) in the 

region of (see section 2.2.2).  920nm 1610nm≤ λ ≤

A technique that samples the scattering angles according to the Mie’s phase 

function was adopted in the Monte Carlo simulation, which was first proposed by 

Toublanc (1996) (see section 3.2). This technique can help reduce computing time 

tremendously. 

All simulations were carried out on our parallel computing cluster consisting of 

32 PCs with Celeron CPU of 500MHz. Each Monte Carlo simulation tracked 3×105 

photons with statistical fluctuations negligible to the experimental errors of Rd and Td and 

took about five minutes to complete on one PC.  
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5.2.3   Results 

Fig 5.7 shows the measured diffuse reflectance Rd and transmittance Td from two 

polystyrene microsphere suspensions with the same sample thickness d = 2.46mm from 

370 nm to 1700nm. The number densities of the two suspensions in Fig 5.7 are 1.569 × 

106 mm-3 and 2.709 × 106 mm-3 respectively.  

The real and imaginary refractive indices of the polystyrene microspheres are 

presented in Fig.5.8 as functions of the wavelength. The mean values were obtained by 

averaging over data determined from the three samples of different concentrations with 

the error bars indicating the standard deviations. For comparison, we included previously 

reported values of  for polystyrene [Matheson and Saunderson 1952, Nikolov and 

Ivanov 2000] in Fig.5.8 (a).  

rn

The wavelength dependence of  has been fitted to the Cauchy dispersion 

relation [Matheson and Saunderson 1952, Nikolov and Ivanov 2000] 

rn

( ) 2

B Cn Aλ = + + 4λ λ
     (5.5) 

for the transparent region of λ ranging from 390 to 1310nm, as shown by the solid line in 

Fig.5.8 (a). With λ in the unit of micrometer, we found A = 1.5725, B = 0.0031080, C = 

0.00034779 based on a least-square fitting.  

The uniqueness of the determined complex refractive index is critical in 

validating the use of the error function Σ as the metric for guiding iteration. We have 
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studied the dependence of Σ on  and at two wavelengths of 950 and 1430nm with 

stepsizes of 1×10

rn in

-4
 in  and 1×10rn -4

 in  for λ = 950 nm and 1×10in -3 for λ = 1430 nm, as 

shown in Fig.5.9 for one sample. These results established that a unique absolute 

minimum of Σ exists in the ranges of  and  investigated at both wavelengths of weak 

and strong absorption. The well-behaved error function Σ demonstrated that the 

employed inverse algorithm leads to a unique solution of complex refractive index of 

polystyrene microspheres from the measured data of Rd and Td. The errors in  using the 

criteria of Σ < 4×10

rn in

rn

-4
 were estimated to be about 0.002 or less.  

To examine the consistency of the inverse calculations, we compared the 

attenuation coefficients µt = µa + µs determined from the measurements of Tc, based on 

Eq.(5.1), and from the refractive indices of microsphere and water, based on Eq.(5.2) and 

Eq.(5.3), for one sample with the microsphere concentration of csp = 6.186×106 mm-3. 

The results are shown in Fig.5.10 that demonstrate the excellent agreement between the 

two methods of determining µt. The signal-to-noise ratio of the Tc data became less than 

10 for wavelength between 370 and 450nm because of the reduced light intensity and 

sensitivity of the Si photodiode and thus no µt data were derived from T. 

The comparison between the calculated and measured values of Rd and Td is 

shown in Fig 5.11 for a polystyrene microsphere suspension with a concentration of 

1.569×106 mm-3 as an example. The agreement established between the calculated and 

the measured Rd and Td provides an additional validation of the inverse calculations. 
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5.3   Optical Parameters of Porcine Dermis under the Smooth Surface Assumption 

The optical properties of porcine dermis tissue were investigated in a spectral 

region between 370 nm and 1700 nm. Optical parameters, µs, µa, and g were inversely 

determined through Monte Carlo simulations under an assumption that the surfaces of the 

dermis tissue samples were flat and smooth.  

5.3.1   Rd and Td Measurements 

The diffuse reflectance Rd and the diffuse transmittance Td were measured with an 

integrating sphere (see section 4.1.1) at wavelengths λ between 370 nm and 530 nm with 

a step size of 10 nm and between 530 nm and 1610 nm with a step size of 30nm. The 

thickness of fresh-sectioned dermis samples ranged from 0.5 mm to 1.17 mm. All the Rd 

and Td measurements were completed within 30 hours after the animal death. A dermis 

sample was sandwiched between two flat window glasses with one drop of physiological 

saline solution placed between the glass and tissue to help to remove air bubbles. 

Diffuse reflectance Rd and transmittance Td as a function of wavelength between 

370 nm and 950 nm from two porcine dermis samples with sample thickness of 0.56 mm 

and 1.15mm respectively are shown in Fig 5.12.  Fig 5.13 presents the diffuse reflectance 

Rd and transmittance Td as a function of wavelength from 890 nm to 1700 nm from two 

porcine dermis samples with sample thickness of 0.65 mm and 1.07 mm respectively.  
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5.3.2   Tc Measurements 

The measurements of the collimated transmission Tc for porcine dermis samples 

with different thickness were conducted through the spatial filtering setup (see section 

4.1.2). Each dermis sample was sandwiched between two window glasses with one or 

two drops of physiological saline solution to help get rid of air bubbles and was 

illuminated by a beam of 6.35 mm in diameter. A step size of 10 nm for wavelength λ 

between 370 nm and 530 nm and a step size of 30 nm for wavelength λ from 530 nm to 

1610 nm were used. The sample thickness varies from 0.05 mm up to 0.4 mm. 

The attenuation coefficient µt is usually derived from the thickness dependence of 

the collimated transmission Tc by means of the linear regression to ln (Tc) [Peters et al 

1990, Du et al 2001]. However, it is only in the so-called single scattering regime that the 

plot of ln (Tc) versus the sample thickness d is a straight line and µt can be determined 

accurately from the slope. The existence of multiple scatterings in the sample tends to 

mix part of scatterings with the collimated light and that cannot be separated from each 

other experimentally. The dependence of ln (Tc) on the thickness d gradually becomes 

nonlinear as d increases. When multiple scatterings exist, linear regression to ln (Tc) 

always underestimates the value of µt.  

As pointed out by Wilson (1995), it is only when the sample thickness d << 

s1 µ that the effect of multiple scatterings in the sample is negligible. In order to reach 

this requirement, for skin tissues of which the scattering coefficients are about 20mm-1, 
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the thickness of samples is in the range of 50 µm. Practically we found that skin tissues 

have to be frozen to get such thin a sample and the integrity of a skin tissue sample with 

thickness under 0.1 mm is remarkably reduced in comparison with thick samples.  

In order to utilize thick samples, a diffusion model to calculate the collimated 

transmission of a slab was discussed in section 2.3.1 of Chapter 2.  Instead of linear 

regression, the thickness dependence of Tc was fitted to a nonlinear equation, Eq. (2.83) 

to retrieve µt. An example is displayed in Fig 5.14 for experimental data at 1010nm.  

For each sample, its thickness d was measured 5 times successively with a 

micrometer of 0.003 mm in precision. And we found the average relative error of the 

thickness measurements were ± 15% for sample thickness d < 0.1 mm,  ± 8% for 0.1 mm 

< d < 0.2 mm, ± 5% for 0.2 mm < d < 0.5 mm, ± 1% for d > 0.5 mm. 

5.3.3   Results of Dermis Tissue Optical Parameters 

Monte Carlo simulations were performed for each sample with the measured Rd 

and Td to inversely determine the value of µs, µa, and g as a function of wavelength. The 

refractive index of dermis tissue was assumed to be 1.41 for all the wavelengths. Using 

Tc-determined µt as a limitation to µs and µa (µt = µs + µa), optimal values of µs, µa, and g 

were approached through the inverse Monte Carlo simulations (see section 3.3). 

Combining the results from 10 porcine dermis samples, we obtained the average 

values of the optical parameters as a function of wavelength from 370 nm to 1700nm, as 
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shown in Fig 5.15. The error bars represent the standard deviations of the corresponding 

parameters among the samples.  

The typical result of the calculated Rd and Td in comparison with the measured Rd 

and Td for a sample is illustrated in Fig 5.16 as a function of wavelength from 370 nm to 

950 nm. An agreement between the calculated and the measured data of Rd and Td has 

been approved. 

§5.3.4  Convergence Test of the Inverse Calculations 

The uniqueness of the inversely determined optical parameters, µs, µa, and g from 

the measured Rd and Td was examined. The behavior of error function Σ was 

investigated at two wavelengths of 500 nm and 1460nm with step sizes of 1×10-3 in g and 

2×10-4 in µs for 500nm, as well as 1×10-3 in g and 2×10-3 in µs for 1460 nm, as displayed 

in Fig 5.17. These results clearly indicate that absolute minimum of Σ exists uniquely in 

the regions of µs and g investigated at both wavelengths of weak and strong absorption. 

The convergence of the error function demonstrates that the employed inverse algorithm 

leads to a unique solution of µs, µa, and g from the measured Rd and Td. 

5.4   Effect of Surface Roughness on Bulk Optical Parameters 

The optical parameters µs, µa, and g for a turbid medium cannot be measured 

directly.  The determination of these parameters from the measurements like the diffuse 

reflectance Rd, the diffuse transmittance Td, and the collimated transmission Tc relies on 
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how accurately the light distributions can be modeled. The in vitro measurements of Rd, 

Td, and Tc in section 5.3, as well as previous reports [Peters et al 1990, Beck et al 1997, 

Simpson 1998, Du et al 2001] involved the use of thin slab tissue with thickness varying 

from 50µm to 2mm and the surfaces of the slab tissue were assumed flat and smooth in 

the inverse determination of µs, µa, and g. However, all the tissue sample surfaces possess 

a certain degree of roughness, which is on the scale of light wavelength. It has been 

proved that even a moderate index mismatch at the rough tissue interfaces can 

significantly affect light distribution in skin phantoms [Lu et al 2000]. In order to 

evaluate the effect of surface roughness on the inverse determination of the optical 

parameters of tissue sample, which has not been studied yet before, a theoretical analysis 

is carried out in this section (section 5.4) through numerical “experiments” based on a 

new version of Monte Carlo code that takes surface roughness into account. Optical 

parameters µs, µa, and g for porcine dermis tissue, which were determined from the 

measured Rd, Td, and Tc with surface parameter δ and a measured in section 5.5 will be 

presented in section 5.6.  

5.4.1   Modelling Method 

We adapted an extensively tested MC code for modeling light distribution in 

rough tissue samples to calculate Rd, Td and Tc [Song et al 1999, Lu et al 2000, Du et al 

2001]. The assembly of a rough tissue slab between glass plates was modeled by a 3-

layer structure of cylindrical slabs.  We employed the Henyey-Greenstein phase function 

to describe scattered light distribution [Flock et al 1992]. The photons emerging from the 
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assembly were registered separately to obtain Rd, Td and Tc according to their positions 

on the outside surfaces of the holder plates and exit directions, as depicted in Fig. 4.1.  

Note here that the Tc was defined in our simulations as the portion of the incident photons 

leaving the integrating sphere through the exit port within a cone angle θc (= 5.00×10-3 

rad) from the direction of incident light [Peters et al 1990, Du et al 2001]. The simulation 

began with a photon incident normally on the smooth air-plate interface and then 

followed its trajectory through the rough interface of plate-tissue. Most of the tracked 

photons transported into the tissue sample and some, if not absorbed, exited from the 

sample and holder plates through the side surfaces or the air-plate interfaces. The profile 

function of each rough interface between the plate and sample was generated numerically 

through a stationary Gaussian stochastic process characterized by a rms height δ and a 

transverse correlation length a [Lu et al 2000].  For each configuration of the sample 

assembly, Rd, Td and Tc were calculated using the bulk parameters of µa, µs, g and surface 

parameters δ and a with predetermined refractive indices of nh and n for the sample 

holder and sample, respectively.  To study the effect of surface roughness on inverse 

determination of optical parameters, we define a squared error function   

2 2

d d0 d d0 c c0

d0 d0 c0

R R T T T T
R T T

⎛ ⎞ ⎛ ⎞ ⎛− − −
Σ = + +⎜ ⎟ ⎜ ⎟ ⎜

⎝ ⎠ ⎝ ⎠ ⎝

2
⎞
⎟
⎠

    (5.6) 

where Rd0, Td0 and Tc0 are either the calculated signals for a reference configuration or 

the measured ones, and Rd, Td and Tc are those for the investigated configuration. Σ is 

used as a metric for the iterative process to converge on an optimized set of parameters 
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which stops when Σ ≤ Σc.  The value of Σc is chosen to be 4×10-4 corresponding to 

relative errors of about 1% in measuring Td, Tc or Rd.  The inversely determined 

parameter set can be either that of the bulk (µs, µa, g) or of the surface (δ, a) with the 

other set treated as known.   

5.4.2   Results 

We started by investigating first the effect of surface parameters on the inverse 

determination of bulk parameters with n = 1.41 and nh = 1.52 for samples of skin dermis 

and glass holder, respectively, near the light wavelength λ = 1µm.  It was confirmed that 

the inverse solution of (µs, µa, g) can be uniquely determined by minimizing Σ for each of 

different sets of surface parameters so that the updated values of (Rd, Td, Tc) approach to 

the reference values.  As an example, we considered a case using µs0 = 5.00mm-1, µa0 = 

0.20mm-1, g0=0.900, δ0 = 10.0µm and a0=100µm for the reference configuration.   When 

the transverse correlation length is changed from the reference value a0 to a = 200µm 

with δ=δ0, the bulk parameters can be uniquely determined to be µs = 11.3mm-1, µa = 

0.40mm-1 and g = 0.95 by minimizing Σ in the ranges of 10.0 < µs  <12.0mm-1, 0.30 < µa  

< 0.50mm-1 and 0.90 < g  <1.00.  Furthermore, we found that the relative role of δ and a 

on the values of bulk parameters can be combined approximately into a single slope 

factor of δ/a.  The effect of surface roughness in term of δ/a on the inverse determination 

of bulk parameters is shown in Fig.5.18.  We note that the two groups of data presented 

in Fig. 5.18 were obtained with the reference configurations set at δ/a = 0.10 (a0=100µm, 
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δ0=10µm), corresponding to different optical thickness {= (µa0 + µs0)d} of 1.02 and 3.04 

for a sample of 0.2mm thickness.  The responses of µs’= (1-g)µs to the roughness are 

shown in the inserts of Figs.5.13 (c) and (f). 

To verify our numerical results, we measured Td, Tc and Rd of intralipid samples 

between two BK7 windows of 3mm thickness (WNL0103, Casix).  One pair of windows 

was made rough on one side with Al2O3 particles of nominal sizes of 9.5µm (Optical 

polishing powder, Universal Photonics).  20% intralipid solution (Baxter Healthcare) was 

diluted with deionized water by a ratio of 1:7 to obtain samples of µs ≈15mm-1 [Flock et 

al 1992].  The refractive index of the intralipid sample ns was determined to be 1.34 at λ= 

633nm using a refractometer built for turbid samples.  Optical measurements of the 

identical intralipid samples in two pairs of windows, smooth and rough, were carried out 

with a laser beam with λ= 633nm, modulated at 17Hz and detected using a Si-photodiode 

and a lock-in amplifier.  The Td and Rd were measured with an integrating sphere and Tc 

was measured with a spatial filtering setup within the cone angle θc as shown Fig. 4.1 

[Du et al 2001].  For the sample between the smooth windows, we obtained Td = 32.5%, 

Rd = 8.44%, and Tc = 4.16% for a sample thickness of 0.20mm and these were used as 

the reference values in Eq. (5.6) to determine the bulk parameters of the intralipid 

samples by assuming δ = 0.  This produced µs = 14.0mm-1, µa = 0.94mm-1 and g = 0.76.  

For the sample between rough windows, the measured values changed to Td =32.4%, Rd 

=9.23% and Tc =0.038% for the same thickness and they were used as the reference 

values to determine possible values of surface parameters by calculating Σ as a function 
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of δ and a.  Identical bulk parameters of µs, µa and g were used as the input parameters 

since the intralipid samples were identical.  The results are plotted in Fig. 5.19 which 

clearly demonstrates that δ and a cannot be uniquely determined in this process except 

the ratio δ/a (≈ 0.11). We also determined the bulk parameters from measured Td, Tc and 

Rd and found that they became µs=38.8mm-1, µa=1.3mm-1 and g=0.89 if the roughness 

was neglected by assuming δ=0.  These results agree with the data in Fig. 5.18.  

The digital microscope images shown in Fig 5.20 are the rough surfaces of the 

glass grounded with 9.5 µm Al2O3 polishing power [Fig 5.20(a)], as well as glasses 

grounded with 5µm [Fig 5.20 (b)] and 3 µm [Fig 5.20(c)] Al2O3 polishing power.  

5.5   Surface Roughness Parameters of Porcine Dermis Samples 

Porcine dermis samples used for surface roughness measurements with a laser 

scanning confocal microscope were fresh sectioned from skin tissue in the same as ones 

used for optical measurements (see section 4.3.2). Each dermis sample was sandwiched 

between two No.1 cover slides with glass thickness about 0.17mm. One or two drops of 

physiological saline solution were placed between the cover slide and dermis to help to 

get rid of air bubbles. The typical sample size is about 2 cm × 2 cm × 0.3 mm. For each 

dermis sample, two different surface locations were probed using a procedure described 

in section 3.4.3.1. 

 Fig 5.21 shows the confocal images of the rough surface of a dermis tissue 

sample taken sequentially at different vertical levels. Fig 5.22 displays a one-dimensional 
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line profile that is chosen randomly within a rough surface. Five such one-dimensional 

line surface profiles were randomly chosen from each dermis sample to conduct the 

statistical analysis. Fig 5.23 gives an example of the height distribution function of a 

rough dermis sample surface and its equivalent Gaussian function which defines as a 

Gaussian function that has the same under-the–curve area as the height distribution 

function. The autocovariance function that is used to determine the lateral correlation 

length a is graphed in Fig 5.24 for a one-dimensional line surface profile with the results 

of a = 10.39 µm and δ = 8.10 µm.  

Table 5.1 lists the statistic data of surface roughness for three porcine dermis 

samples. The mean values and its standard deviations were calculated from four locations 

within each sample. Table 5.2 summarizes the statistical parameters of surface roughness 

averaged among three porcine dermis samples.   

The surface profile measuring procedure was validated by an optical flat window 

glass, as well as three BK7 optical glasses (WNL0103, Casix) grounded with Al2O3 

particles of nominal size of 9.5 µm, 5 µm, and 3 µm (Optical polishing powder, 

Universal Photonics), as well as a rough surface sample ( Mexico-6024) of which the 

surface roughness were examined by Atomic Force microscopy (AFM). Fig 5.25 exhibits 

the reconstructed surface profile for an optical flat surface. Table 5.3 presents the 

statistical results for the grounded glass surfaces measured by confocal microscope. 

Comparison between the confocal microscope and AFM is displayed in Table 5.4.  
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5.6   Optical Parameters of Porcine Dermis under the Rough Surface Assumption  

Laser has an advantage over an incoherent light source to provide large 

irradiance. The high irradiance of incident light enables the measurements of the diffuse 

reflectance Rd, the diffuse transmittance Td and the collimated transmission Tc from the 

same turbid sample of thickness up to 1.5 mm by means of an integrating sphere. For a 

dermis sample, the simultaneously measured Tc are more accurate than the Tc obtained 

from thin samples which leads to large error in thickness measurements and additional 

damage to the tissue integrity due to the freezing process for sectioning. This approach 

ensures the employment of the inverse determination we developed in section 5.4 to take 

into account of the surface roughness of the dermis samples.  Therefore, we can improve 

significantly the accuracy of the optical parameters inversely determined from the 

simultaneously measured Rd, Td, and Tc.   

5.6.1   Experimental Method 

A modified integrating sphere system was employed to measure the diffuse 

reflectance Rd, the diffuse transmittance Td, and the collimated transmission Tc directly 

from the same turbid sample, as shown in Fig 4.6. Seven lasers provide the incident light 

separately at eight wavelengths: 325 nm and 433 nm from a Cd-He laser (Series 56, 

Omnichrome), 532 nm from a SHG YAG laser, 632.8 nm from a He-Ne laser (05-LHP-

143, Melles Groit), 1640 nm from a YAG laser, 855 nm, 1310 nm, and 1550 nm from 

three diode laser. The diameter of the entrance and exit ports of the integrating sphere 

was 3.0 mm. The diameter of sample exposure area was 6.0 mm. The incident laser beam 
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was modulated at 17 Hz by a chopper. Dermis samples were fresh sectioned from the 

porcine skin tissue. The sample thickness is within the range between 0.2 mm and 0.5 

mm for wavelengths 325 nm, 532nm, and 632.8 nm and between 0.4 mm and 1.0 mm for 

wavelengths 850nm, 1064nm, 1310nm, and 1550nm. At each wavelength, five dermis 

samples with different thickness were used for Rd, Td, and Tc measurements. 

5.6.2   Results 

Under the assumption that surfaces of the samples were flat, optical parameters, 

µs, µa, and g were firstly determined from each set of Rd, Td, and Tc through the inverse 

Monte Carlo simulations. Then using the surface roughness parameters: δ = 8.17 µm and 

a = 8.96 µm which were determined with the confocal imaging method, optical 

parameters, µs, µa, and g were inversely calculated under the assumption that surfaces of 

the sample were rough. The least-square criterion Σ for the optimization of µs, µa, and g 

was defined as 

( ) ( ) ( )2 2
d d d d c ccal cal cal

d d

R R T T T T
R T T

⎛ ⎞ ⎛ ⎞ ⎛− −
Σ = + +⎜ ⎟ ⎜ ⎟ ⎜⎜ ⎟ ⎜ ⎟ ⎜

⎝ ⎠ ⎝ ⎠ ⎝

2

c

⎞−
⎟⎟
⎠

   (5.7) 

where , , and ( )d cal
R ( )d cal

T ( )c cal
T  are the Monte Carlo simulated diffuse reflectance, 

diffuse transmittance, and the collimated transmission for a trial set of µs, µa, and g.  
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Fig 5.26 presents the average values of µs, µa, and g for porcine dermis tissue 

under the condition that surfaces are smooth (circles in Fig 5.26) or rough with δ = 8.17 

µm and a = 8.96 µm (squares in Fig 5.26). 
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 Figure 5.1 Calibration of integrating sphere setup with two reflectance 
standards: (a) 40% and (b) 50%. The solid lines are the measured reflectance 
values of two reflectance standards respectively by the integrating sphere. The 
circles are the manufactory’s calibrated reflectance values. 
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Figure 5.2 Calibration of integrating sphere setup with two 
reflectance standards: (a) 40% and (b) 50%. 
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Figure 5.3 Transmission of a longpass filter with a cut-on edge at (a) 
540 nm and (b) 840 nm. 
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Figure 5.4 Determination of the attenuation coefficient µt of a polystyrene 
microsphere suspension with microsphere concentration of csp = 6.186×106 mm-3. 
Tc is plotted in log scale. 
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Figure 5.5 (a) the collimated transmission for a porcine dermis sample of 
0.54 mm thick at different lateral positions and (b) the light intensity 
distribution on the focal plane.   
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group) and rough (blue group and pink group) surfaces. The Circles within each group 
represent Tc at the corresponding sample thickness for a set of bulk optical parameter: (µs 
= 5.0 mm-1, µa = 0.02 mm-1, g = 0.7) and the squares for a set of bulk optical parameters: 
(µs = 10.0 mm-1, µa = 0.02 mm-1, g = 0.7). The surface roughness parameters are (δ = 0.5 
µm, a = 10 µm) and (δ = 1.0 µm, a = 10 µm) for blue group and pink group respectively. 
The solid lines represent the linear regressions with µt = 5.026 mm-1 and 10.029 mm-1 for 
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Figure 5.7 Measured diffuse reflectance Rd and transmittance Td from a 
polystyrene suspension with microspheres’ concentration of (a) 2.709 × 106 mm-3 
and (b) 1.569 × 106 mm-3. The solid lines are for guide of eye. 
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Figure 5.8 Inversely determined refractive indices of the polystyrene 
microspheres as functions of wavelength: (a) nr with solid line as the fitting 
curve based on the Cauchy dispersion formula; (b) ni, inset: ni in a log-scale.
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Figure 5.9 Contour plot of the error function Σ in the plane of nr and ni of 
the polystyrene microsphere in a suspension with 

6 3c 6 .1 8 6 1 0 m m −= × : (a) λ = 950nm; (b) λ= 1430 nm. 
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Figure 5.10 Comparison of the attenuation coefficients determined by Tc 
from the spatial filtering measurements and by Rd and Td from the 
integrating sphere measurements for a suspension with concentration 
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Figure 5.11 Comparison between the calculated and measured (a) Rd 
and (b) Td for a polystyrene suspension with a concentration of 
1.569×106 mm-3. Solid lines are for guide of eye. 
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Figure 5.12 Diffuse reflectance Rd and transmittance Td of two porcine dermis 
samples with thickness of (a) 1.15 mm and (b) 0.56 mm. The solid lines are 
for guide of the eye.  
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Figure 5.13 Diffuse reflectance Rd and transmittance Td for two porcine 
dermis samples with thickness of (a) 1.07mm and (b) 0.65mm. The solid 
lines are for guide of the eye.  
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Figure 5.14 Comparison between linear regression and nonlinear 
regression for the determination of µt from Tc. Tc is plotted in ln 
scale. 
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Figure 5.15 The average values of the optical parameters determined under 
smooth surface assumption for porcine dermis tissue. The error bars represent 
the standard deviation among 10 samples. The solid lines are for guide of eye. 
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Figure 5.17 Contour plot of the error function Σ in the plane of µs and 
g for porcine dermis sample of 0.246 mm thick at (a) 500 nm and (b) 
1460 nm. 
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Figure 5.18  Dependence of µa, µs and g on δ/a.  The bulk parameters of the 
sample for the reference configuration are: µa0 = 0.2 mm-1, g0=0.90 and (a)-
(c): µs0 = 15mm-1; (d)-(f): µs0 = 5mm-1.  Other parameters are: 
thickness=0.20mm, diameter=14mm, n=1.41 for the sample and 3mm, 
22mm and 1.51 for the holder plates, respectively.  Inserts in (c) and (f): µs’ 
as functions of δ/a.  Two groups of data are compared in each figure with 
either δ or a kept as a constant and solid lines are for the guide of eyes.   
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Figure 5.19 Contour plot of the error function Σ versus 
surface parameters δ and a for the intralipid sample 
between rough windows 
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(a) 

(b) 

(c) 

Figure 5.20 Digital microscope images of rough surfaces of glasses 
grounded with (a) 9.5 µm, (b) 5 µm, and (c) 3µm polishing powder. 
The black bar in each graph represents 10 µm long. 
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Figure 5.21 Confocal images of a porcine dermis sample. 
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Figure 5.22 A line surface profile for a rough surface with δ = 10.39 
µm and a = 8.10 µm. 
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Figure 5.23 Surface height distribution function (black line) with its 
equivalent Gaussian function (red line) for a rough surface profile. 
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Figure 5.24 Autocovariance function for a rough surface with δ = 10.36 
µm and a = 8.10 µm. 
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Fig 5.25 Surface profile for an optical flat widow glass 
reconstructed by confocal imaging. 
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Figure 5.26 Mean values of (a) µs,  (b) µa, and (c) g for porcine dermis 
tissue. The circles represent data determined under flat surfaces while the 
squares represent data obtained under rough surfaces. The solid lines are f
guide of eye and the error bars are the standard deviation.  

or
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Table 5.1 Statistics of surface roughness for three porcine dermis samples 

 

 δ (µm) a (µm) Skewness Kurtosis 

Sample 1 5.58 ± 0.42 4.49 ± 1.94 -1.16 ± 0.11 3.71 ± 0.27 

Sample2 7.36 ± 1.36 9.98 ± 6.64 -1.03 ± 0.14 3.79 ± 0.30 

Sample3 11.59 ± 2.41 12.4 ± 4.97 -0.12 ± 0.35 2.43 ± 0.16 
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Table 5.2 Sample averaged statistic data of surface roughness for porcine dermis 

δ (µm) 8.17 ± 3.01 

a (µm) 8.96 ± 5.63 

Skewness -0.7676 ± 0.5262 

Kurtosis 3.3067 ± 0.6903 



 158

 

 

 
Table 5.3 Statistics of surface roughness for polishing powder 

grounded glass measured by confocal microscope  

 

Power size 
(µm) 9.5 5 3 Mexico-

6024 

δ (µm) 1.46 0.8 0.9 2.23 

a (µm) 7.20 4.50 1.80 4.20 

Skewness -2.81×10-2 -1.55 -4.75 0.948 

Kurtosis 3.98 3.67 3.33 5.05 
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Table 5.4 Statistics of surface roughness of polishing 

powder grounded glasses and a sample (Mexico-6024) 

measured by AFM 

 

 

 

Powder size 
(µm) 9.5 5 3 Mexico-6024 

δ (µm) 0.52 0.34 0.29 0.708 

a (µm) 6.75 5.56 4.31 8.00 



Chapter 6   Discussions and Summary 

The goal of this dissertation research is to develop a system of methods to 

inversely determine the optical parameters of skin dermis tissues in vitro and various 

tissue phantoms.  We have achieved this goal by developing different Monte Carlo codes 

based on the radiative transfer theory to extract these parameters from the experimental 

data and investigated the effect of surface roughness on the results of inverse 

determination.

6.1   Complex Refractive Index of Polystyrene Microsphere 

For the real refractive index shown in Fig.5.5 (a), we observe differences between 

our data of the microspheres and the early results from bulk samples in the visible region, 

which increases as the wavelength decrease. It has been reported that the magnitude of 

strain-induced birefringence in elongated polystyrene films increases as the wavelength 

decreases from 800 to 400nm [Inoue, et al. 1998]. On the basis of these facts we 

speculate that the difference in  is due to the process related residue strain within the 

microspheres through the photoelastic effect.  

rn

An absorption peak can be seen near 1400nm in Fig.5.5 (b) through the 

wavelength dependence of the imaginary refractive index and is the causes of the 

anomalous dispersion in the real refractive index. The increased fluctuation, represented 

by the large error bars, in the real refractive index in the region near 1400nm is attributed 

to the larger errors in Rd and Td due to the increased absorption of water near 1450nm 
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(Hale and Querry 1973) and reduced sensitivity of the GaAs photodiode near 1610nm. 

We have also found that the absorption of water has a significant effect on the inverse 

determination of microsphere index for the near-infrared region and its effect has to be 

taken into account by using the Mie code for absorbing medium. For example, the 

relative difference between the inversely determined indices of microspheres is increased 

from 
'
r r

r
r

n n
n
−

∆ = = 0.13% and 
'
i i

i
i

n n
n
−

∆ =  = 37% at λ=950nm to  = 3.0% and r∆ i∆  = 

90% at λ=1400nm with  as the refractive index determined with the Mie-

code without considering water absorption. 

' '
rn n i n= + '

i

6.2   Effects of Surface Roughness on Determination of Bulk Optical Parameters 

As shown in Fig. 5.13 the effect of surface roughness is significant on the inverse 

determination of the bulk parameters of µs, µa and g.  This is especially the case for 

samples of small optical thickness: µs decreases from about 22 to 1mm-1 and µa from 0.55 

to 0.1mm-1 when the slope factor δ/a varies between 0.01 and 0.20.  The change in µs (µa) 

can be understood since the scattering (absorption) coefficient is defined as the 

probability of photon being scattered (absorbed) per unit of pathlength.  For rough 

samples, more photons are deflected out of the original path at the surfaces than smooth 

samples.  To keep the updated values of Rd and Td close to the reference, µs has to be 

reduced for rough samples.  As a result, average pathlength of tracked photons within the 

rough sample is increased and µa has to be reduced as well to keep the portion of 

absorbed photons same as the reference configuration.  The anisotropy factor g was found 
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to decreases significantly as the surface of the tissue sample become rough and a 

moderate index mismatch of ∆n=0.11 can severally distort the angular distribution of the 

light signals.  While the effects of roughness on µs, µa and g are similar for both samples 

of different optical thickness, the responses of µs’= (1-g)µs to the roughness are 

profoundly different.  As demonstrated by the inserts of Figs.5.13 (c) and (f), µs’ for the 

optical thick sample is insensitive to the roughness and µs’ of the optical thin sample 

changes with roughness similar to that of µs, indicating that in the single scattering or 

nondiffusive regime light signals are significantly affected by the surface roughness.  

These results strongly suggest that the effect of surface roughness needs to be carefully 

analyzed even for in vivo determination of bulk tissue optical parameters from the 

reflectance measurement where the nondiffusive regime dominates the light remitted 

from superficial layer of the tissue near the light source.  

6.3   Optical Parameters for Porcine Dermis Tissue 

Optical parameters determined under the assumption that sample surfaces are flat 

and smooth for porcine dermis tissue, as presented in Fig 5.15 show the similar results 

with the previous reports in the near infrared from 900 nm to 1700 nm [Du et al 2001]. 

As expected, the response of the dermis tissue to the near infrared light is dominated by 

scattering. And the anisotropy factor g remains approximately constant around 0.9 from 

900 nm to 1400nm and that indicates the forward tendency of light scattering by dermis. 

An absorption peak located between 1400 and 1500 nm is believed to associate with 

water absorption [Hale and Querry 1973]. In the spectral region between 370 nm and 
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900nm, dermis still shows scattering dominant feature and g as well as remains 

approximately constant until about 600nm. Both the scattering coefficient µs and the 

absorption coefficient µa start increase while the anisotropy factor g begins to decrease. 

As shown in Fig 5.26, the surface roughness corrected optical parameters for 

dermis tissue exhibit. Both µs and g decrease significantly by comparison with their 

counterparts determined under the assumption of flat surfaces, as predicted by our 

numerical analysis in section 5.4. However, surface roughness corrected µa decrease in 

comparison with the flat surface derived µa below 850nm, but increase above 850nm. 

The current version of Monte Carlo code requires a big static memory to store the 

2-dimentional surface profile generated according to Gaussian distribution. For example, 

about 1Gbyte memory is required to generate a rough surface profile with a lateral 

resolution of 3 µm on a square area of 6×6 mm. For a rough surface with a 10 µm lateral 

correlation length, 1 GB memory barely reaches the minimum requirement to sample a 

surface profile. From a surface maximum to its minimum only three points are sampled.  

6.4   Summary 

In this dissertation, a theoretical and experimental investigation of optical 

properties of skin tissue and polystyrene microsphere suspensions is presented. This 

research is part of the ongoing research efforts in the Biomedical Laser Laboratory at 

East Carolina University to develop a system of experimental methods and theoretical 

models for accurate determination of optical parameters of mammalian tissues, which are 
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fundamental to many biomedical applications of optical technologies. As a result of this 

investigation, the complex refractive index of polystyrene in the form of microsphere is 

obtained as a function of wavelength from 370 nm to 1610nm for the first time to our 

knowledge. We have developed a Monte Carlo based inverse procedure to extract the 

bulk optical parameters from the measured light signals with surface roughness on scales 

close to the wavelength of light. It has been shown clearly that the surface roughness can 

significantly affect the values of bulk tissue optical parameters (including µa) inversely 

determined from in vitro or in vivo measurements even for a moderate index mismatch. 

As a consequence, surface roughness corrected optical parameters of porcine dermis 

tissue have been determined at 325, 442, 532, 632.8, 850, 106.4, 1330, and 1550 nm in 

comparison with ones as a function of wavelength between 370 nm to 1700nm without 

considering the surface roughness. In the future, we plan to upgrade our Monte Carlo 

code to use the dynamic rough surface generation procedure to reduce the memory 

requirement and improve the lateral simulation resolution.  Other methods of fast Monte 

Carlo and efficient inverse algorithms should be developed in order to achieve in vivo 

determination of tissue optical parameters and clinical applications. 
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Appendix 

A.1  Mie Theory For Nonabsorptive and Absorptive Host Medium 

When an electromagnetic wave (E, H)  propagates in a linear, isotropic, 

homogeneous medium, it must satisfy the following wave equations:  

2 2E k E 0∇ + = ,     (A.1) 

2 2H k H 0∇ + = ,     (A.2) 

derived from the Maxwell’s equations for a monochromatic wave: 

E 0∇ ⋅ = ,      (A.3) 

H 0∇ ⋅ = ,      (A.4) 

E i H∇ × = ω µ

E

,     (A.5) 

H i∇ × = − ωε ,     (A.6)  

where is the wave number, ω is the angular frequency of the wave, ε is the 

permittivity of the medium, and µ is the permeability of the medium. 

2k = ω εµ
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Instead of solving the E  and H  vectors directly, Mie (1908) proposed to 

construct to two vector functions by introducing a scalar function ψ in a spherical polar 

coordinates (r, θ, φ):  

M (r )= ∇ × ψ ,      (A.7) 

MN
k

∇ ×
= ,      (A.8)  

where k is the wave number. We can see that M  and N  have the properties: 

M 0∇ ⋅ = ,      (A.9) 

N 0∇ ⋅ = ,      (A.10) 

N kM∇ × = ,      (A.11) 

M kN∇ × = .      (A.12) 

More importantly, if the scalar function ψ is a solution to a scalar wave equation in the 

spherical polar coordinates, i.e., 

2
2 2

2 2 2

1 1 1r sin
r r r r sin r r sin

∂ ∂ψ ∂ ∂ψ ∂ ψ⎛ ⎞ ⎛ ⎞+ θ + +⎜ ⎟ ⎜ ⎟∂ ∂ θ ∂ ∂θ θ ∂φ⎝ ⎠ ⎝ ⎠
k 0ψ = ,  (A.13) 

then  and  will satisfy the vector wave equations:  M N
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2 2M k M 0∇ + = ,      (A.14) 

2 2N k N 0∇ + = .      (A.15) 

Therefore,  and  have all the required properties of an electromagnetic field. And 

the problem of finding solution to the vector field equations (A.1) and (A.2) reduces to 

the problem of finding the solutions to the scalar wave equation (A.13), which 

dramatically decrease the mathematical complexity of the problem. 

M N

The linearly independent solutions to Eq. (A.13) are: 

( ) ( ) ( )m
emn n ncos m P cos zψ = φ θ ρ ,    (A.16) 

and 

( ) ( ) ( )m
omn n nsin m P cos zψ = φ θ ρ ,    (A.17) 

where ρ = koru, the subscripts e and o denote even and odd, ( )m
nP cos θ  is the associated 

Legendre function of the first kind and  is any of the following four spherical Bessel 

functions: 

nz

( ) ( )n n 12j Jπ
+ρ 2ρ = ρ ,     (A.18) 

( ) ( )n n 12y Yπ
+ρ 2ρ = ρ ,       (A.19)                          
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( ) ( ) ( ) ( )1
n n nh j iyρ = ρ + ρ ,    (A.20) 

( ) ( ) ( ) ( )2
n n nh j iyρ = ρ − ρ ,    (A.21) 

here ( )n 1 2J + ρ  and ( )n 1 2Y + ρ  are the Bessel functions of first and second order. Therefore, 

the linear independent solutions of M  and N  expressed by emnψ  and  are omnψ

( )emn emnM r= ∇ × ψ ,     (A.22) 

( )omn omnM r= ∇ × ψ ,     (A.23)

 emn
emn

MN
k

∇ ×
= ,     (A.24) 

omn
omn

MN
k

∇ ×
= ,     (A.25) 

which can be written in component form as: 

( ) ( ) ( ) ( ) ( ) ( )
m
nm

emn n n n

dP cosmM sin m P cos z e cos m z
sin d

e
∧ ∧

θ φ

θ−
= φ θ ρ − φ

θ θ
ρ , (A.26) 

( ) ( ) ( ) ( ) ( ) ( )
m
nm

omn n n n

dP cosmM cos m P cos z e sin m z
sin d

e
∧ ∧

θ φ

θ
= φ θ ρ − φ

θ θ
ρ , (A.27) 



 175

    

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

n m
emn n r

m
n

n

m
n

n

z
N cos m n n 1 P cos e

dP cos 1 dcos m z e
d d

P cos 1 dmsin m z e
sin d

∧

∧

θ

∧

φ

ρ
= φ + θ

ρ

θ
+ φ ρ ρ⎡ ⎤⎣ ⎦θ ρ ρ

θ
− φ ρ ρ⎡ ⎤⎣ ⎦θ ρ ρ

,    (A.28) 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

n m
omn n r

m
n

n

m
n

n

z
N sin m n n 1 P cos

dP cos 1 dsin m z e
d d

P cos 1 dm cos m z e
sin d

∧

e

∧

θ

∧

φ

ρ
= φ + θ

ρ

θ
+ φ ρ ρ⎡ ⎤⎣ ⎦θ ρ ρ

θ
+ φ ρ ρ⎡ ⎤⎣ ⎦θ ρ ρ

.    (A.29) 

Because of the completeness of the functions emnM , omnM , , , any 

electromagnetic fields can be expanded in an infinite series of these functions. 

emnN

x

omnN

Now consider a homogeneous spherical particle with radius of Ra embedded in a 

medium that is illuminated by a plane wave with x-polarization propagating along z 

(Fig.A.1): 

ikr cos
i 0 ˆE E e eθ= ,     (A.30) 

where  

x rˆ ˆe sin cos e cos cos e sin êθ φ= θ φ + θ φ − φ .   (A.31) 

For the incident wave, its field can be expanded as 
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( )
( ) ( )( )1 1n

i o e1n0
n 1

2n 1E E i M iN
n n 1

∞

=

+
=

+∑ 1n − ,    (A.32)

( )
( ) ( )( )1 1n

i o1n0
n 1

k 2n 1H E i M iN
n n 1

∞

=

− +
=

ωµ +∑ e1n + ,   (A.33) 

where µ is the permeability of the surrounding medium, the superscript (1) appended to 

the vector spherical harmonics here is used to indicate that the radial dependence of the 

generating function is specified by  according to the requirement that the incident field 

is finite at origin. 

nj

Correspondingly, the field inside the spherical particle ( )1 1E , H  is expanded as 

( ) ( )( )1
1 o1n e1nn n n

n 1

E E c M id N
∞

=

= −∑
1

,    (A.34)  

( ) ( )( )1
1 e1n o1nn n n

n 11

kH E d M ic
∞

=

−
= +

ωµ ∑
1

N ,    (A.35) 

where µ1 is the permeability of the sphere. According to the asymptotical behaviors of the 

spherical Bessel functions, the scattered field ( )s sE ,H can be expanded as 

( ) ( )( )3
s e1nn n n

n 1

E E ia N b M
∞

=

= −∑
3

o1n ,    (A.36)  

( ) ( )( )3
s o1nn n n

n 1

kH E ib N a M
∞

=

= +
ωµ ∑

3
e1n ,    (A.37) 
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where ( ) ( )n
n 0E i E 2n 1 n n 1= + +

1

, the superscript (3) appended to vector spherical 

harmonics is used to indicate that the radial dependence of the generating function is 

specified by  ( )1
nh .

At the boundary between the sphere and the surrounding medium(r = Ra), we 

have conditions: 

i sE E Eθ θ θ+ = ,     (A.38) 

i sE E E1φ φ φ+ = ,     (A.39) 

i sH H H1θ θ θ+ = ,     (A.40) 

i sH H H1φ φ φ+ = .     (A.41) 

From Eqs. (A.32), (A.33), (A.34), (A.35), (A.36), and (A.37), we could obtain the 

scattering coefficients: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

' '2
n n 1 n n

n ' '1 12
n n 1 n n

m j mx xj x j x mxj mx
a

m j mx xh x h x mxj mx

µ − µ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣=
⎡ ⎤µ − µ

⎦

⎡ ⎤⎣ ⎦⎣ ⎦

,  (A.42) 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

' '
1 n n n n

n ' '1 1
1 n n n n

j mx xj x j x mxj mx
b

j mx xh x h x mxj mx

µ − µ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣=
⎡ ⎤µ − µ

⎦

⎡ ⎤⎣ ⎦⎣ ⎦

 ,  (A.43) 

and the coefficients of the field inside the particle: 
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( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

' '1 1
1 n n 1 n n

n ' '1 1
1 n n n n

j mx xh x h x xj x
c

j mx xh x h x mxj mx

⎡ ⎤µ − µ ⎡ ⎤⎣ ⎦⎣ ⎦=
⎡ ⎤µ − µ ⎡ ⎤⎣ ⎦⎣ ⎦

 ,  (A.44) 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

' '1 1
1 n n 1 n n

n ' '1 12
n n 1 n n

mj x xh x mh x xj x
d

m j mx xh x h x mxj mx

⎡ ⎤µ − µ ⎡ ⎤⎣ ⎦⎣ ⎦=
⎡ ⎤µ − µ ⎡ ⎤⎣ ⎦⎣ ⎦

,  (A.45) 

where the prime indicates differentiation with respect to the argument in the parentheses, 

the size parameter a
a

2 NRx kR π
= =

λ
, the relative refractive index 1k Nm

k N
= = 1 , N1 and 

N are the refractive indices of particle and medium, respectively. 

By introducing the Riccati-Bessel functions: 

( ) ( )n njψ ρ = ρ ρ ,     (A.46) 

( ) ( ) ( )1
n nhξ ρ = ρ ρ ,     (A.47) 

the scattering coefficients (A.42) and (A.43) can expressed as 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

' '
n n n n

n ' '
n n n n

m mx x x mx
a

m mx x x mx
ψ ψ − ψ ψ

=
ψ ξ − ξ ψ

,    (A.48) 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

' '
n n n n

n '
n n n n

mx x m x mx
b

mx x m x mx
ψ ψ − ψ ψ

=
ψ ξ − ξ ψ ' ,    (A.49) 
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where the permeability of the particle 1µ  and the surrounding medium µ are taken to be 

the same and this is approximately true for all the nonmagnetic media. 

A.1.1 The Mie Theory for a Nonabsorptive Host Medium 

When the host medium is nonabsorptive to the incident light, it was pointed out 

[Bohren and Huffman 1983] that the energy absorbed by the particle is given by  

abs rA
W S e

∧

= − ⋅∫ dA ,      (A.50) 

where A represents a closed surface surrounding the particle,  is unit vector along the 

radial direction in spherical polar coordinates, and S

rê

 is the time-averaged Poynting 

vector defined as 

{ }*1S Re E H
2

= × .      (A.51)  

In the medium outside the sphere, the electromagnetic field ( )E,H  is the superposition of 

the incident wave  and the scattered wave ( i iE ,H ) ( )s sE ,H : 

iE E E= + s

s

,       (A.52) 

   .       (A.53) iH H H= +
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Therefore, the time-averaged Poynting vector S  can be presented as the sum of three 

terms: 

{ }*
i s e

1S Re E H S S S
2

= × = + + xt     (A.54) 

where { }*
i ii

1S Re E H
2

= × , { }*
s ss

1S Re E H
2

= ×  and { }* *
i s s iext

1S Re E H E H
2

= × + × .   

The energy scattered by the sphere, can be defined as scaW

sca s rA
W S e d

∧

= ⋅∫ A ,      (A.55) 

and the total energy removed or extinguished from the incident wave,  can be 

expressed as  

extW

ext ext rA
W S e

∧

= − ⋅∫ dA .      (A.56) 

We can find that, from Eqs. (A.50), (A.55), and (A.56), 

   .      (A.57) ext abs scaW W W= +

Therefore, the interaction of a plane wave with a spherical particle can be characterized 

by the extinction cross section Cext, the scattering cross section Csca, and the absorption 

cross section as Cabs and they are defined respectively as 
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ext
ext

i

WC
I

= ,       (A.58) 

sca
sca

i

WC
I

= ,       (A.59) 

abs
abs

i

WC
I

= ,       (A.60) 

where 2
i

1 kI
2

=
ωµ iE  is the incident wave intensity. And we have 

ext abs scaC C C= + .      (A.61) 

extW  and  can written in the component form as scaW

 (2 * * * * 2
ext i s i s s i s i0 0

1W Re E H E H E H E H r sin d
2

π π

φ θ θ φ θ φ φ θ= − − + θ θ∫ ∫ ) dφ ,  (A.62) 

 ( )2 * * 2
sca s s s s0 0

1W Re E H E H r sin d
2

π π

θ φ φ θ= −∫ ∫ dθ θ φ     (A.63) 

where the radius r  ≥ Ra of the imaginary sphere is arbitrary.  

Consider the case that the incident light is x-polarized. From Eq. (A.32) and 

(A.33), the incident field can be written in the component form as 

( '
i n n n

n 1

cosE E i
∞

θ
=

φ
= ψ π −

ρ ∑ )n nψ τ ,     (A.64) 
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( '
i n n n

n 1

sinE E
∞

φ
=

φ
= ψ π −

ρ ∑ )n nψ τ ,     (A.65) 

i
kH tanθ = φ

ωµ iE θ ,       (A.66) 

i
kH cotanφ

−
=

ωµ iE φφ .       (A.67) 

where functions  and  are defined as nπ nτ

    ( )1
n

n

P cos
sin

θ
π =

θ
,     (A.68) 

    ( )1
n

n

dP cos
d

θ
τ =

θ
.     (A.69) 

The corresponding scattered field is 

  ( '
s n n n n n

n 1

cosE E ia b
∞

θ
=

φ
= ξ τ −

ρ ∑ )n nξ π ,     (A.70) 

  ( '
s n n n n n

n 1

sinE E b ia
∞

θ
=

φ
= ξ τ −

ρ ∑ )n nξ π ,     (A.71) 

  ( '
s n n n n

n 1

k sinH E ib a
∞

θ
=

φ
= ξ τ −

ωµ ρ ∑ )n n nξ π ,    (A.72) 
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  ( '
s n n n n

n 1

k cosH E ib
∞

θ
=

φ
= ξ π

ωµ ρ ∑ )n n na− ξ τ .    (A.73) 

By Substituting Eqs. (A.70), (A.71), (A.72) and (A.73) into Eq. (A.62), we can 

obtain the energy scattered by the sphere 

( )(
2

20
sca n n

n 1

E
W 2n 1 a

k

∞

=

π
= + +

ωµ ∑ )2b .   (A.74) 

From Eq. (A.73), the scattering cross section can be deduced as 

( ) ( )2s
sca n n2

n 1i

W 2C 2n 1 a
I k

∞

=

π
= = + +∑ 2b .    (A.75) 

Likewise, the extinction cross section is  

( ) {ext
ext n n2

n 1i

W 2C 2n 1 Re
I k

∞

=

π
= = + +∑ }a b .    (A.76) 

The scattering amplitude matrix for a plane wave scattered by a sphere has been 

found to have the form: 

( )ik r z
s 1

s 2 i

E S 0e
E 0 S Eikr

−

⊥ ⊥

⎛ ⎞ ⎛ ⎞⎛
=⎜ ⎟ ⎜ ⎟⎜− ⎝ ⎠⎝⎝ ⎠

iE ⎞
⎟
⎠

,    (A.77) 

where  
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( ) (1 n n
n

2n 1S a
n n 1

)n nb+
= π

+∑ + τ ,    (A.78) 

( ) (2 n n
n

2n 1S a
n n 1

)n nb+
= τ +

+∑ π

)

,    (A.79)  

and ( )  and  are the incident and scattered wave components parallel and 

perpendicular to the scattering plane, which is defined by the scattering direction  and 

. 

i iE ,E⊥ ( s sE ,E⊥

rê

zê

For an unpolarized incident wave, the scattering phase becomes 

  ( ) ( )2
1 2

1p S S
2

θ = + 2 .     (A.80) 

And the anisotropy factor g is then given by  

( ) { } ( ) { }
2

* * *a
n n 1 n n 1 n n2

n nsca

g cos

n n 24 R 2n 1Re a a b b Re a b
x C n 1 n n 1+ +

= θ

⎡ ⎤+π +
= + +⎢ ⎥+ +⎣ ⎦

∑ ∑
. (A.81) 

A.1.2 The Mie Theory for an Absorptive Host Medium 

When the medium within which the sphere is immersed is nonabsorptive to the 

incident wave, the effect of the host medium is simply to reduce the complex refractive 

index of the spherical particle by a factor of the refractive index of the medium. The 

scattering properties such as the scattering cross section Csca, the absorption cross section 
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Cabs, and the extinction cross section Cext calculated at the sphere’s surface (i.e., the near 

field) are identical to that calculated in the radiation zone (i.e., the far field).  

However, when the host medium is absorptive to the incident wave, the effect of 

the host medium absorption on the prediction of light scattering by the spherical particle 

requires thorough consideration. Different types of Csca have been employed and 

discussed in previous studies [Chylek 1997, Fu and Sun 2001, Yang et al 2002]. An 

inherent scattering cross-section can be defined in the near-field, i.e., at the sphere’s 

surface, of the scattered light while an apparent scattering cross-section can be derived 

from the asymptotic form of the scattered light fields in the far-field or the radiation zone 

where light measurements are carried out. As Yang et al [2002] have pointed out, the 

scattered wave when leave the particle and travel within the absorbing medium will 

suffer not only attenuation in magnitude but also modulation of the wave modes when 

reaching the radiation zone. The form of the scattering cross section used to determine 

the scattering properties in the far field needs careful examination. The inherent 

scattering cross section, will couple the medium’s absorption in an inseparable way in the 

radiation zone that it can’t correctly predict the experimental observations in the far field. 

The apparent scattering cross section, which is calculated from the asymptotic form of the 

scattering waves in the far field, will be the proper definition of the scattering cross 

section for the radiation transfer calculations. On the other hand, the inherent absorption 

cross-section is assumed identical to its apparent part, which is defined in the same way 

as the scattering cross section. 
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For a plane incident wave with a x-polarization propagating in the z direction 

within an absorptive medium of the complex refractive index 0N  

0 0rN N iN= + 0i ,      (A.82) 

the inherent scattering cross section  and extenuation cross section  can be 

calculated from Eqs. (A.75) and (A.76), respectively. While the inherent absorption cross 

section is given by 

scaC scaC

abs ext scaC C C= − .     (A.83) 

However, the apparent  scattering cross section  is given by '
scaC

( ) ( )( )2 20i 0 a'
sca n n2 2

n 10 0

2 exp 2N k R
C 2n 1

N k

∞

=

π −
= +∑ a b+     (A.84) 

where 0k 2= π λ  in which λ is the wavelength of the incident wave in vacuum and Ra is 

the radius of the spherical particle. 

Therefore, for spherical particles system of particle number concentration C0 

within an absorptive medium, in the far field, the absorption coefficient  is given by aµ

0i
a 0 abs

4 NC C π
µ = × +

λ
.     (A.85) 

The scattering coefficient  is given by, as suggested by Yang et al [2002], sµ
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( )'
s 0 sca 0,i 0 aC C exp 2N k Rµ = × × .    (A.86)
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z

zê
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Figure A.1 Light scattering by a sphere. 
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A.2   Flow Chart of Monte Carlo Based Photon Tracking 

Initiate beam and sample configurations; Give the maximum photon number

Inject a photon: position r 

Reflection at glass-sample interface

No

Yes 

Reflection at sample-glass interface
Yes

Lateral boundary 

Vertical boundary
No 

Yes

In sample: decide life path La, next step Ls and direction s 

No New r and s

Alive? 

Yes

New s Reflection at glass-air
Yes

Yes

No 

Forward ? 
No 

Collimated? 
Yes 

Tc+1 Td+1 
Yes No 

Last? No

Collimated
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Yes No

No 

Yes
The End

Begin

No 
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A.3   Flow Chart of Monte Carlo Based Automatic Determination of µs, µa, and g 
         from Rd and Td 

Read in measured (Rd)mea, (Td)mea, and µt

Trial µa, µs (=µt-µa), g

Monte Carlo photon Tracking

Calculated (Rd)cal, (Td)cal
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A.4   Flow Chart of Monte Carlo Based Determination of Complex Refractive Index 
         of Microsphere Suspensions 

 
Read in measured (Rd)mea, (Td)mea, 
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A.5   Flow Chart of Monte Carlo Based Manual Determination of µs, µa, and g  
         under rough surfaces from Rd, Td, and Tc 
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A.6   QB Code for Data Acquisition of Confocal Imaging 

' program name: confocal.bas 
' (i) reading data from lock-in via GPIB488 board 
' (ii) Control a stepping motor and PZT with data acquisition at stops 
using 
'      DAS1600 (J2) board 
 
'last modification by Ma: Dec 15, 2003 
 
'$INCLUDE: 'QB4DECL.BI' 
'$INCLUDE: 'DASDECL.BI' 
'$INCLUDE: 'DAS1600.BI'      'library file for DAS1600 card 
'$INCLUDE: 'IEEEQB.BI'       'library file for CEC488 card 
     
 DEFINT H-Z 
 DECLARE SUB initlz (er%, Delaytime!, st1$) 
 DECLARE SUB moving (dr$, stpsz!) 
 DECLARE SUB saving (startime$, stoptime$, st1$, totalsecond, J1%) 
 DECLARE SUB GRAPHICSINITIALIZE (XMIN%, xmax%, Ymin%, Ymax%, 
XLABEL$, YLABEL$) 
 DECLARE SUB dproc (ADT%) 
 DECLARE SUB selemenu (ha%) 
 DECLARE SUB procpara (st1$, Ymin%, Ymax%) 
 DECLARE SUB adpara (d%) 
 DECLARE SUB motorctrl (dir%, stnumber%, trnumber%, J1%, de1$) 
 DECLARE SUB delay (d1%) 
 DECLARE SUB checksensitivity (vol!, phase!, fullvol!, sen%, sta%) 
 DECLARE SUB snapdata (stepsequence%, vol!, phase!, Delaytime!) 
 DECLARE SUB moveinch (StepSize%, Direction$) 
 DECLARE SUB movestep (Axis$, StepSize%, Direction$) 
 DECLARE SUB toggleDirection (Direction$) 
    
 DECLARE SUB BitRead (ADReadIn%, ADReadOut%) 
    
 datasize% = 10500 
 DIM SHARED AdData(datasize%) AS SINGLE        ' data array 
 DIM SHARED otherdata(datasize%) AS SINGLE        ' experimental 
parameter 
 DIM SHARED DataBuf(500) AS INTEGER         ' A/D sample buffer 
 DIM SHARED CHANGAINARRAY(50) AS INTEGER    ' Chan/Gain array 
 
 DIM SHARED nBoards AS INTEGER 
 DIM SHARED nDasErr AS INTEGER              ' Error flag 
 DIM SHARED szCfgName AS STRING             ' File name string 
 DIM SHARED hDev AS LONG                    ' Device Handle 
 DIM SHARED hAD AS LONG                     ' A/D Frame Handle 
 DIM SHARED conumber AS INTEGER             ' # of total data 
 DIM SHARED dsamplenumber AS INTEGER        ' dsample=# of A/D 
sample per data 
 DIM SHARED dsampletime AS INTEGER          ' # of (0.1us) between 
A/D samples 
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 DIM SHARED ADgaincode AS INTEGER           ' A/D gain code 
 DIM SHARED ADgain AS INTEGER               ' A/D actual gain 
 DIM SHARED dactime AS SINGLE               ' time between data 
acquisition 
 DIM SHARED svpointer AS INTEGER           ' save pointer 
 
'default values 
 dsamplenumber = 20              'default # of samples per A/D 
reading 
 dsampletime = 5000              '0.5 ms between samples 
 ADgaincode = 0 
 ADgain = 1                      'gain=1 
 conumber = 500 
 datasav% = 0 
 datacq% = 0 
 Ymin% = 0 
 Ymax% = 4096 
 dactime = 1                     '1 sec between two data 
acquisition 
 runnumber% = 0 
 
 CLS : LOCATE 5, 1 
 
'initilization of board with default values 
    
 CALL initlz(er%, Delaytime!, st1$) 
     
 PRINT : PRINT 
 PRINT "This program read signal from either CH0 of the DAS1600 
board " 
 PRINT "or the lock-in amplifer via GPIB 488 board." 
 PRINT "The samples will be averaged to obtain data as a funtion 
of time." 
 PRINT "The data will be plotted on screen as a function of time." 
 PRINT "The voltage range: 0.00 -- 10.00 (V)" 
 PRINT 
 PRINT "hit any key to continue. " 
 DO WHILE INKEY$ = "": LOOP 
 
'print menu 
 
60      CALL selemenu(ha) 
     
70      CLS : LOCATE 10, 1 
 SELECT CASE ha 
 CASE 1 
  GOTO 100 
 CASE 2 
  GOTO 200 
 CASE 3 
  GOTO 300 
 CASE 4 
  GOTO 400 
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 CASE 5 
  GOTO 500 
 CASE 6 
  GOTO 600 
 CASE 7 
  IF svpointer < 300 THEN 
  PRINT "there is nothing to save, hit any key to main menu. 
" 
  DO WHILE INKEY$ = "": LOOP 
  ELSE 
  datasav% = datasav% + 1 
  IF svpointer = 300 THEN K1% = J0%       'using parameters 
for mode 3 
  IF svpointer = 400 THEN K1% = J1%       'using parameters 
for mode 4&5 
  IF svpointer = 600 THEN K1% = stepsequence%    'using 
parameters for mode 6 
  CALL saving(startime$, stoptime$, st1$, totalsecond, K1%) 
  END IF 
  GOTO 60 
 CASE 8 
  GOTO 1000 
 CASE ELSE 
  GOTO 60 
END SELECT 
 
100     CALL procpara(st1$, Ymin%, Ymax%)    'change processing 
parameters 
 GOTO 60 
 
200     CALL adpara(d%)         'change A/D board parameters (DAS1601) 
 GOTO 60 
 
'start of single-shot data acquisition loop 
300     svpointer = 300           'pointer for saving data 
 datacq% = datacq% + 1 
 CLS 
 PRINT "single-shot data acquisition: hit any key when ready for 
next reading" 
 PRINT "Press S key to stop the reading loop, press R key to redo 
last entry." 
 PRINT "total number of reading = "; conumber 
 PRINT 
 PRINT "hit any key to proceed >> " 
 DO WHILE INKEY$ = "": LOOP 
     
 CLS 
 PRINT "sequnce"; SPACE$(10); "voltage reading (V)"; SPACE$(10), 
"parameter" 
     
 FOR J0% = 0 TO conumber - 1 
 INPUT "enter an integer parameter, or S for stop, or R for redo 
last entry): ", ik$ 
 IF UCASE$(ik$) = "S" THEN 
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 BEEP: LOCATE 23, 10 
 INPUT "STOP detected, enter: 1--continue, 2--main menu >> ", cc1% 
 J0% = J0% - 1 
  IF cc1% = 2 THEN GOTO 60 ELSE GOTO 380 
 ELSEIF UCASE$(ik$) = "R" THEN 
 J0% = J0% - 2: GOTO 380 
 ELSE 
 otherdata(J0%) = VAL(ik$) 
 END IF 
     
 CALL dproc(ADT%) 
 AdData(J0%) = ADT% 
     
'be careful of overflow 
 ADvol! = (ADT% / 4096 / ADgain) * 10    'converting into volt 
 PRINT J0% + 1; SPACE$(10); ADvol!; SPACE$(10); otherdata(J0%) 
   
380     NEXT J0% 
     
 BEEP 
 LOCATE 24, 10 
 PRINT "Data qcquissition is done.  Hit any key to main menu. " 
 DO WHILE INKEY$ = "": LOOP 
 GOTO 60 
'end of single-shot data acquisition loop 
 
'start of continuous data acquisition loop 
400     svpointer = 400 
 XMIN = 0:               xmax = conumber 
 XLABEL$ = "time":       YLABEL$ = "data" 
 datacq% = datacq% + 1 
     
 SCREEN 0: CLS 
 CALL GRAPHICSINITIALIZE(XMIN, xmax, Ymin%, Ymax%, XLABEL$, 
YLABEL$) 
 LOCATE 3, 1: PRINT "S to stop" 
 LOCATE 4, 1: PRINT "start time" 
 LOCATE 5, 1: PRINT TIME$ 
 LOCATE 8, 1: PRINT "A/D gain" 
 LOCATE 9, 1: PRINT ADgain 
 LOCATE 10, 1: PRINT "total data" 
 LOCATE 11, 1: PRINT "="; conumber 
 LOCATE 13, 1: PRINT "data" 
 
 startime$ = TIME$ 
 beginsecond = TIMER 
 
 FOR J1% = 0 TO conumber - 1 
     
 dacbegin = TIMER                'start timing 
 
 CALL dproc(ADT%)                'A/D with dsamplenumber averages 
 AdData(J1%) = ADT% 
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 PSET (J1%, ADT%)                                'draw on screen 
  
 LOCATE 22, 1: PRINT SPACE$(79): LOCATE 22, 1 
 ADvol! = (ADT% / 4096 / ADgain) * 10           'converting into 
volt 
 PRINT "current (V) = "; ADvol!               'be careful of 
overflow 
 IF J1% > 0 THEN 
 LADvol! = (AdData(J1% - 1) / 4096 / ADgain) * 10 
 LOCATE 22, 40 
 PRINT "last (V) ="; LADvol!; 
 END IF 
 
450     IF (TIMER - dacbegin) < dactime THEN 
  LOCATE 14, 1: PRINT J1%; " th" 
  IF UCASE$(INKEY$) = "S" THEN 
  BEEP: LOCATE 23, 10 
  stoptime$ = TIME$ 
  totalsecond = TIMER - beginsecond 
  INPUT "stop detected, enter: 1--continue, 2--main menu >> 
", cc1% 
   IF cc1% = 2 THEN 
   GOTO 60 
   ELSE 
   LOCATE 23, 1: PRINT SPACE$(80) 
   GOTO 450 
   END IF 
  END IF 
  GOTO 450 
 END IF 
     
 NEXT J1% 
     
 stoptime$ = TIME$ 
 totalsecond = TIMER - beginsecond 
     
 BEEP 
 LOCATE 6, 1: PRINT "stop time" 
 LOCATE 7, 1: PRINT TIME$ 
 LOCATE 23, 10 
 PRINT "Data qcquissition is done within"; totalsecond / 60; 
"munites, "; 
 PRINT "hit any key to main menu. " 
 DO WHILE INKEY$ = "": LOOP 
 GOTO 60 
'end of continuous data acquisition loop 
 
'start of one stepping motor control loop 
500     CLS : svpointer = 400: datacq% = datacq% + 1 
'assuming 1000step/turn for stepping motor and 2mm/turn for translator 
 stpsz! = 2: PRINT "stepsize = 2 um" 
 
 PRINT "choose: " 
 PRINT " 1 ---- continuous driving " 
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 PRINT " 2 ---- stepping and data acquisition " 
 INPUT "enter a number: ", ch10% 
'        INPUT "enter motor direction (Forward / Reverse): ", dr$ 
 dr$ = "F"            'take this one out if the above one is used 
 IF ch10% = 1 THEN 
 CALL moving(dr$, stpsz!) 
 GOTO 60 
 END IF 
 
520     INPUT "enter the number of steps per move: ", stnumber% 
 IF stnumber% < 1 THEN GOTO 520 
 PRINT "distance per move = "; stnumber% * stpsz!; "um" 
540     INPUT "enter travel range of the motor in mm: ", trvl! 
 trnumber% = trvl! / (.001 * stpsz! * stnumber%) 
 IF trnumber% > 5000 THEN 
 BEEP: PRINT "too many moves needed, please redo." 
 GOTO 540 
 ELSEIF trnumber% < 1 THEN 
 BEEP: PRINT "error inputs , please redo" 
 GOTO 540 
 END IF 
 INPUT "delay between moves (Y/N) ? ", de1$ 
 st1$ = "stepsize=" + STR$(stpsz! * stnumber%) + "um" 
 startime$ = TIME$ 
 IF UCASE$(dr$) = "F" THEN dir% = 0 ELSE dir% = 1 
 CALL motorctrl(dir%, stnumber%, trnumber%, J1%, de1$) 
 stoptime$ = TIME$ 
 GOTO 60 
'end of one stepping motor control loop 
 
'start of x-z scan loop (stepping motor for x and PZT for z) 
' set the step size of the motor 
 
600    st1$ = "" 
 svpointer = 600 
 runnumber% = runnumber% + 1 
 IF runnumber% > 1 THEN GOTO 620 
 
'*****        motor X: 400 steps per revolution 
'*****     micrometer: 500 micron per revolution 
'*****           gear: 13/105 
    
 XMotorStepSize! = 13! / 84!    '13/84um per step for motor X 
          
'    XMotorStepSize% = 25    '2.5um per step for motor X (horizontal) 
'    YMotorStepSize% = 25    '2.5um per step for motor Y (vertical) 
 
 CLS : LOCATE 2, 1 
    
 PRINT "In this mode, a stepping motor and a PZT will be 
controlled to scan "; 
 PRINT "in the horizontal direction(by stepping moyor) and in the 
vertical "; 
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 PRINT "direction(by PZT). PZT will go up(Y) numbers of steps to 
complete one"; 
 PRINT "way travel, then the horizontal motor will move one step 
BACKWARD,"; 
 PRINT "then PZT will be set to 0 and start move up again. " 
 PRINT 
 PRINT "One data will be taken BEFORE each step of motor scan." 
 PRINT : PRINT 
 
610  PRINT "Please input varibles:" 
    
'    INPUT "horizontal travel distance (0 - 25mm): ", XTravelDistance! 
'    INPUT "horizontal step size (10 - 1000um): ", XStepSize% 
    
 PRINT "Choose Horizontal Travel Distance(unit:um):" 
 INPUT XTravelDistance! 
    
 PRINT "Choose Horizontal Travel Step Size(unit:um):" 
 INPUT XStepSize! 
 PRINT 
 
'    INPUT "vertical total travel distance (0 - 10mm): ", 
YTravelDistance! 
'    INPUT "vertical step size (10 - 1000um): ", YStepSize% 
   
 INPUT "voltage step for PZT (0-10 V):", PZTContVolStep! 
 
 PRINT 
 PRINT "data acquisition delay time (in seconds): ", Delaytime! 
 PRINT "-------------------------------------------" 
 PRINT 
     
'*** Calculate the loop numbers: 
    
'    XLoopNumber% = XTravelDistance! * 1000 / XStepSize%   '=# of steps 
'    XStepLoopNumber% = XStepSize% * 10 / XMotorStepSize%  '=# of TTL 
pulse per step 
'    YLoopNumber% = YTravelDistance! * 1000 / YStepSize% 
'    YStepLoopNumber% = YStepSize% * 10 / YMotorStepSize% 
    
 XLoopNumber% = XTravelDistance! / XStepSize!   '=# of steps 
 XStepLoopNumber% = XStepSize! / XMotorStepSize!   '=# of TTL 
pulse per step 
    
 IF (XLoopNumber% + 1) * (YLoopNumber% + 1) > 10500 THEN 
 PRINT "too many data, redo please" 
 GOTO 610 
 END IF 
 
620    INPUT "z-position: "; zp! 
 
 PRINT 
    
 PRINT "step # of horizontal motor = "; XLoopNumber% 
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'    PRINT "step # of vertical motor = "; YLoopNumber% 
 PRINT "TTL pulses per step of h-motor = "; XStepLoopNumber% 
'    PRINT "TTL pulses per step of v-motor = "; YStepLoopNumber% 
 PRINT 
     
'    INPUT "Do you want to change above values? (Y/N)", IV$ 
'    IF UCASE$(IV$) = "Y" THEN GOTO 610 
     
 XDirection$ = "F"       ': YDirection$ = "F" 
'   JxSTOP% = 10 
 
 CLS 
 LOCATE 1, 1: PRINT "press S key to stop" 
 st1$ = st1$ + "h-step #=" + STR$(XLoopNumber%) + "; v-step #=" + 
STR$(YLoopNumber%) 
 st1$ = st1$ + "; delay=" + STR$(Delaytime!) + "s" 
 stepsequence% = 0: beginsecond = TIMER: startime$ = TIME$ 
 PRINT "step #", "X step #", "PZT Vol(V)", "vol", "phase" 
 
'**** initial reading to check if sensitivity is right 
'    CALL snapdata(stepsequence%, vol!, phase!, Delaytime!) 
'    stepsequence% = stepsequence% - 1 
 
'---query sensitivity 
    
'    CALL checksensitivity(vol!, phase!, fullvol!, sen%, 0) 
     
'---compare full scale to vol! to see if need to adjust 1 scale up or 
down 
    
'    WHILE (vol! > .95 * fullvol!) OR (vol! < .2 * fullvol!) 
'    CALL checksensitivity(vol!, phase!, fullvol!, sen%, 1) 
'        stepstart! = TIMER 
'        WHILE (TIMER - stepstart!) < Delaytime! 
'        WEND 
'    CALL snapdata(stepsequence%, vol!, phase!, Delaytime!) 
'    stepsequence% = stepsequence% - 1 
'    WEND 
    
 GOTO 628 
 
'**************test A/D read********************** 
'627    wDasErr = KADRead%(hDev, 0, 1, wADValue%) 
'    IF (wDasErr <> 0) THEN 
'        BEEP 
'        PRINT "ERROR"; HEX$(wDasErr); "OCCURRED DURING A/D READ AT 0" 
'        STOP 
'    END IF 
 
'    CALL BitRead(wADValue%, ADCount%) 
' 
'    PRINT "A/D read-in = ", ADCount% 
'    PZTADReadVol! = (ADCount% - 2048) / 4096 * 2 
'    PRINT "A/D Read PZT Control Voltage = ", PZTADReadVol! 
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'    PRINT "Do you want to continue your test?" 
'    PRINT "If yes, type 1; if no, type 0." 
'    INPUT wDasErr 
'    IF (wDasErr = 0) THEN 
'        STOP 
'    END IF 
'    GOTO 627 
'********************************************************* 
'---start of the scann loops 
    
628    FOR Jx% = 0 TO XLoopNumber% 
 
'---move vertical motor up in YLoopNumber% steps 
'    FOR Jy% = 1 TO YLoopNumber% 
 
'***** test KDAWrite   speed *************************** 
'    PZTContVol! = 120! 
'    DAWVal& = (INT(PZTContVol! * 4096! / 10!)) * 16 
'    PRINT "10000 KDAWrite start time =", TIMER 
'    FOR Jy% = 1 TO 10000 
'       
'        wDasErr = KDAWrite%(hDev, 0, DAWVal&) 
'        IF (wDasErr <> 0) THEN 
'            BEEP 
'            PRINT "ERROR"; HEX$(wDasErr); "OCCURRED DURING D/A WRITE 
AT 0" 
'            STOP 
'        END IF 
'     NEXT Jy% 
'     PRINT "10000 KDAWrite end time =", TIMER 
'**********************************************************************
*** 
   
'***** set PZT to 0 at each x position 
 
 PZTContVol! = 0! 
 
637    DAWVal& = (INT(PZTContVol! * 4096! / 10!)) * 16 
    
 wDasErr = KDAWrite%(hDev, 0, DAWVal&) 
 IF (wDasErr <> 0) THEN 
  BEEP 
  PRINT "ERROR"; HEX$(wDasErr); "OCCURRED DURING D/A WRITE AT 
0" 
  STOP 
 END IF 
  
'    INPUT "PZT Control Voltage (0 - 10 V)", PZTContVol! 
'    GOTO 637 
 
'******* read from A/D channel 0****************** 
    
'    wDasErr = KADRead%(hDev, 0, 1, wADValue%) 
'    IF (wDasErr <> 0) THEN 
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'        BEEP 
'        PRINT "ERROR"; HEX$(wDasErr); "OCCURRED DURING A/D READ AT 0" 
'        STOP 
'    END IF 
    
'    CALL BitRead(wADValue%, ADCount%) 
 
'    PRINT "A/D read-in = ", ADCount% 
'    PZTADReadVol! = (ADCount% - 2048) / 4096 * 2 
'    PRINT "A/D Read PZT Control Voltage = ", PZTADReadVol! 
'************************************************************ 
'----initial reading to check if sensitivity is right 
    
 CALL snapdata(stepsequence%, vol!, phase!, Delaytime!) 
 stepsequence% = stepsequence% - 1 
 
'---query sensitivity 
   
 CALL checksensitivity(vol!, phase!, fullvol!, sen%, 0) 
    
'---compare full scale to vol! to see if need to adjust 1 scale up or 
down 
   
 WHILE (vol! > .95 * fullvol!) OR (vol! < .2 * fullvol!) 
  CALL checksensitivity(vol!, phase!, fullvol!, sen%, 1) 
  stepstart! = TIMER 
  WHILE (TIMER - stepstart!) < Delaytime! 
  WEND 
  CALL snapdata(stepsequence%, vol!, phase!, Delaytime!) 
  stepsequence% = stepsequence% - 1 
 WEND 
 
 WHILE (PZTContVol! <= 9.995)        '**** move PZT **** 
 
'*** read data first from lock-in *** 
 CALL snapdata(stepsequence%, vol!, phase!, Delaytime!) 
 
'*** compare full scale to vol! to adjust 1 scale up or down *** 
 WHILE (vol! > .95 * fullvol!) OR (vol! < .3 * fullvol!) 
  CALL checksensitivity(vol!, phase!, fullvol!, sen%, 1) 
  stepstart! = TIMER 
  WHILE (TIMER - stepstart!) < Delaytime! 
  WEND 
  CALL snapdata(stepsequence% - 1, vol!, phase!, Delaytime!) 
 WEND 
    
 PRINT stepsequence%, Jx%, PZTContVol!, vol!, phase! 
 
'*** then move 1 step vertically 
'    CALL movestep("Y", YStepLoopNumber%, YDirection$) 
 
'*** move PZT one step *** 
 PZTContVol! = PZTContVol! + PZTContVolStep! 
 DAWVal& = (INT(PZTContVol! * 4096! / 10!)) * 16 
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 wDasErr = KDAWrite%(hDev, 0, DAWVal&) 
 IF (wDasErr <> 0) THEN 
  BEEP 
  PRINT "ERROR"; HEX$(wDasErr); "OCCURRED DURING D/A WRITE AT 
0" 
  STOP 
 END IF 
 
'*** read from A/D channel 0 *** 
'    wDasErr = KADRead%(hDev, 0, 1, wADValue%) 
'    IF (wDasErr <> 0) THEN 
'        BEEP 
'        PRINT "ERROR"; HEX$(wDasErr); "OCCURRED DURING A/D READ AT 0" 
'        STOP 
'    END IF 
  
'    CALL BitRead(wADValue%, ADCount%) 
 
'    PRINT "A/D read-in = ", ADCount% 
'    PZTADReadVol! = (ADCount% - 2048) / 4096 * 2 
'    PRINT "A/D Read PZT Control Voltage = ", PZTADReadVol! 
'**********************************************************************
*  
 
 stepstart! = TIMER 
   
 WHILE (TIMER - stepstart!) < Delaytime! 
  IF UCASE$(INKEY$) = "S" THEN 
   BEEP: LOCATE 24, 1 
   stopsecond = TIMER - beginsecond 
   INPUT "stop detected, enter: 1--continue, 2--exit: ", 
cc1% 
   beginsecond = TIMER - stopsecond        'reset the 
begin time 
   IF cc1% = 2 THEN GOTO 670 
  END IF 
 WEND 
    
 WEND        'end of PZT scan 
 
'645     NEXT Jy% 
'------ end of y-motor loop 
 
'    CALL toggleDirection(YDirection$)       'reverse vertical travel 
direction 
 
'*** read data first from lock-in *** 
'    CALL snapdata(stepsequence%, vol!, phase!, Delaytime!) 
 
'*** compare full scale to vol! to adjust 1 scale up or down 
'    WHILE (vol! > .95 * fullvol!) OR (vol! < .2 * fullvol!) 
 
'       CALL checksensitivity(vol!, phase!, fullvol!, sen%, 1) 
'       stepstart! = TIMER 
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'       WHILE (TIMER - stepstart!) < Delaytime! 
'       WEND 
'       CALL snapdata(stepsequence% - 1, vol!, phase!, Delaytime!) 
'    WEND 
 
'*** then move horizontal motor by one step *** 
 IF Jx% = XLoopNumber% THEN GOTO 655     'do not move at last step 
 
 CALL movestep("Y", XStepLoopNumber%, XDirection$) 
     
 stepstart! = TIMER 
 WHILE (TIMER - stepstart!) < Delaytime! 
  IF UCASE$(INKEY$) = "S" THEN 
   BEEP: LOCATE 24, 1 
   stopsecond = TIMER - beginsecond 
   INPUT "stop detected, enter: 1--continue, 2--exit: ", 
cc1% 
   beginsecond = TIMER - stopsecond 
   IF cc1% = 2 THEN GOTO 670 
  END IF 
 WEND 
 
655    NEXT Jx% 
'----- end of two-motor loop 
 
670     totalsecond = TIMER - beginsecond: stoptime$ = TIME$ 
 BEEP: BEEP: BEEP 
 dt% = (XLoopNumber% + 1) * (YLoopNumber% + 1) 
 st1$ = st1$ + "; expected total data #=" + STR$(dt%) + "z-
position=" + STR$(zp!) 
 PRINT st1$: PRINT 
 
'find max and min value of the signal 
 VolMax! = 0: VolMin! = 10 
 FOR m% = 1 TO dt% - 2 
     
 IF VolMax! < AdData(m%) THEN 
 VolMax! = AdData(m%) 
 max% = m% 
 END IF 
 
 IF VolMin! > AdData(m%) THEN 
 VolMin! = AdData(m%) 
 min% = m% 
 END IF 
 
 NEXT m% 
 PRINT "maximum voltage ="; VolMax!; "@"; max% 
 PRINT "minimum voltage ="; VolMin!; "@"; min% 
 PRINT 
     
 INPUT "do you want save data ? (y/n) ", sa$ 
 IF UCASE$(sa$) = "N" THEN GOTO 60 
 ha = 7 
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690     GOTO 70 
 
1000    IF datacq% > datasav% THEN 
 CLS : LOCATE 10, 1 
 INPUT "YOUR DATA MAY NOT BE SAVED ! Do you want to save them 
(y/n) ? ", chc$ 
 IF UCASE$(chc$) = "N" THEN GOTO 1100 
 GOTO 60 
 END IF 
     
1100    END 
 
SUB adpara (d%) 
     
2000    CLS : LOCATE 10, 1 
 INPUT "enter total # of A/D sample per data: ( < 500 ): ", 
dsamplenumber 
 IF dsamplenumber > 500 OR dsamplenumber < 1 THEN GOTO 2000 
2100    INPUT "enter time between samples (in 0.1 us): ", dsampletime 
 IF dsampletime < 1000 THEN GOTO 2100 
 PRINT "enter signal gain: " 
 PRINT "code     <---->    voltage gain" 
 PRINT " 0       <---->          1" 
 PRINT " 1       <---->         10" 
 PRINT " 2       <---->        100" 
 PRINT " 3       <---->        500" 
2200    INPUT "enter a code: ", ADgaincode 
 IF ADgaincode = 3 THEN 
 ADgain = 500 
 ELSEIF ADgaincode = 2 THEN 
 ADgain = 100 
 ELSEIF ADgaincode = 1 THEN 
 ADgain = 10 
 ELSEIF ADgaincode = 0 THEN 
 ADgain = 1 
 ELSE 
 GOTO 2200 
 END IF 
 
 CALL initlz(er%, Delaytime!, st1$) 
 
END SUB 
 
SUB BitRead (ADReadIn%, ADReadOut%) 
'read 16-bit  integer  bit-by-bit 
 DIM max(12) AS INTEGER 
 
'right-shift data 4 bits 
 ADReadIn% = ADReadIn% / 16 
 
'pick bit value 
 max(1) = ADReadIn% AND &H1 
 max(2) = ADReadIn% AND &H2 
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 max(3) = ADReadIn% AND &H4 
 max(4) = ADReadIn% AND &H8 
 max(5) = ADReadIn% AND &H10 
 max(6) = ADReadIn% AND &H20 
 max(7) = ADReadIn% AND &H40 
 max(8) = ADReadIn% AND &H80 
 max(9) = ADReadIn% AND &H100 
 max(10) = ADReadIn% AND &H200 
 max(11) = ADReadIn% AND &H400 
 max(12) = ADReadIn% AND &H800 
 
 ADReadOut% = 0 
 FOR i% = 1 TO 12 
  ADReadOut% = ADReadOut% + max(i%) 
 NEXT i% 
END SUB 
 
SUB checksensitivity (vol!, phase!, fullvol!, sen%, sta%) 
'-- either query or adjust sensitivity according to the value of sta% 
 
SELECT CASE sta% 
 
CASE 0 
'-- query the sensitivity setting and calculate full scale voltage 
6000    CALL send(8, "SENS?", status%)          '8=lock-in addr 
 IF status% <> 0 THEN PRINT status%: STOP 
  
 poll% = 0: 
 WHILE (poll% AND 2) = 0          'bit1=high means no command 
execution 
  CALL spoll(8, poll%, status%)       'serial poll of lock-in 
 WEND 
  
 s$ = SPACE$(10) 
 CALL enter(s$, length%, 8, status%) 
 IF status% <> 0 THEN PRINT status%: STOP 
  
 IF length% > 2 THEN 
 PRINT "string length (sens) is too long, read again" 
 GOTO 6000 
 END IF 
     
 sen$ = LEFT$(s$, 2):    sen% = VAL(sen$) 
 fa% = sen% MOD 3                'the remainder of sen% / 3 
 ex% = (sen% \ 3) - 9 
 
'calculate the full scale voltage from sen% 
 IF fa% = 0 THEN 
 fullvol! = 2 * 10 ^ ex% 
 ELSEIF fa% = 1 THEN 
 fullvol! = 5 * 10 ^ ex% 
 ELSE 
 fullvol! = 10 ^ (ex% + 1) 
 END IF 
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CASE ELSE 
'--- compare full scale voltage and vol! to adjust sensitivity 
6200    fa% = sen% MOD 3 
 IF vol! > .95 * fullvol! THEN 
 sen% = sen% + 1 
  IF fa% = 0 THEN fullvol! = 2.5 * fullvol! ELSE fullvol! = 2 
* fullvol! 
 ELSEIF vol! < .3 * fullvol! THEN 
 sen% = sen% - 1 
  IF fa% = 1 THEN fullvol! = fullvol! / 2.5 ELSE fullvol! = 
fullvol! / 2 
 ELSE 
 GOTO 6300 
 END IF 
 
 sn$ = "SENS" + STR$(sen%) 
 CALL send(8, sn$, status%)         'set the sensitivity 
 
 poll% = 0 
 WHILE (poll% AND 2) = 0          'bit1=high means no command 
execution 
  CALL spoll(8, poll%, status%)         'serial poll of lock-
in 
 WEND 
 
END SELECT 
 
6300    END SUB 
 
SUB delay (d1%) STATIC 
 FOR j% = 1 TO d1% 
 a1! = 1.05 ^ 10 
 NEXT j% 
END SUB 
 
'********************************************************************* 
SUB dproc (ADT%) STATIC 
  
 DIM STotal AS LONG 
' use the passed A/D frame handle to perform A/D and data is in 
DataBuf() 
 nDasErr = KSyncStart%(hAD) 
 IF nDasErr <> 0 THEN 
 BEEP 
 PRINT "ERROR "; HEX$(nDasErr); " OCCURRED DURING 'KSyncStart'": 
STOP 
 END IF 
 
' convert samples into decimal count (0 to 4095) and averaging 
 
 STotal = 0 
 FOR i% = 0 TO dsamplenumber - 1 
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 count0% = (DataBuf(i%) / 16) AND &HFFF          'conversion into 
count 
 STotal = STotal + count0% 
 NEXT i% 
 ADT% = STotal / dsamplenumber 
 
END SUB 
 
'**********************************************************************
**** 
SUB GRAPHICSINITIALIZE (XMIN, xmax, Ymin, Ymax, XLABEL$, YLABEL$) 
STATIC 
 
'This routine puts up a graphics window, leaving room for axis 
labelling. 
'It leaves the graphics screen in "real world" coordinates so no data 
'transformations are necessary before plotting.  Also makes the last 
four 
'lines of the screen a text window, so as to leave the graphics 
undisturbed. 
 
SCREEN 9        'set up 640x350 graphics 
 
VIEW (113, 1)-(638, 270), , 1   'initialize size of graphics window 
    'leaving room at left for labelling and 
    'four line text window at bottom 
COLOR 7, 0 
 
'if y label is > 18 characters, just take the first 18 characters 
IF LEN(YLABEL$) > 18 THEN YLABEL$ = LEFT$(YLABEL$, 18) 
LASTCHAR% = LEN(YLABEL$) 
'print y axis label vertically in column 13 centered about line 10 
FOR j% = 1 TO LASTCHAR% 
 LOCATE j% + 3, 13: PRINT MID$(YLABEL$, j%, 1) 
NEXT j% 
 
'if the x label is longer than 39 characters, just take the first 39 
IF LEN(XLABEL$) > 39 THEN XLABEL$ = LEFT$(XLABEL$, 39) 
LASTCHAR% = LEN(XLABEL$) 
'print x axis label on line 21 centered about column 46 
LOCATE 21, 46 - LASTCHAR% / 2: PRINT XLABEL$ 
 
'print axis extrema 
LOCATE 1, 1: PRINT SPACE$(13 - LEN(STR$(Ymax))); Ymax 
LOCATE 20, 1: PRINT SPACE$(13 - LEN(STR$(Ymin))); Ymin 
LOCATE 21, 15: PRINT XMIN 
LOCATE 21, 67: PRINT SPACE$(13 - LEN(STR$(xmax))); xmax 
 
WINDOW (XMIN, Ymax)-(xmax, Ymin)    'define graphics window 
     'in "real world" coordinates 
 
PSET (XMIN, Ymin)     'put the graphics pen in the lower left corner 
   'use "LINE -(xpoint,ypoint)" to connect points. 
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END SUB 
 
SUB initlz (er%, Delaytime!, st1$) 
' initialization of the internal data tables according to step.CFG / 
DAS1600 
   
'    szCfgName = "step.CFG" + CHR$(0) 
 szCfgName = "DAS1600.CFG" + CHR$(0) 
 nDasErr = DAS1600DEVOPEN%(SSEGADD(szCfgName), nBoards) 
 IF nDasErr <> 0 THEN 
 BEEP 
 PRINT "ERROR "; HEX$(nDasErr); " OCCURRED DURING 
'DAS1600DEVOPEN'": STOP 
 END IF 
 
'----------------------------------------------------------------------
----- 
' establishment of communication with the driver through the Device 
Handle. 
 
 nDasErr = DAS1600GETDEVHANDLE%(0, hDev) 
 IF (nDasErr <> 0) THEN 
 BEEP 
 PRINT "ERROR "; HEX$(nDasErr); " OCCURRED DURING 
'DAS1600GETDEVHANDLE'": STOP 
 END IF 
 
'----------------------------------------------------------------------
----- 
' get a Handle to an A/D Frame (the data tables inside the driver 
pertaining 
' to A/D operations). 
  
 nDasErr = KGetADFrame%(hDev, hAD) 
 IF (nDasErr <> 0) THEN 
 BEEP 
 PRINT "ERROR "; HEX$(nDasErr); " OCCURRED DURING 'KGETADFRAME'": 
STOP 
 END IF 
 
'----------------------------------------------------------------------
----- 
' Assign the data array declared above to the Frame Handle, and specify 
' number of samples to acquire. 
 
 nDasErr = KSetBufI%(hAD, DataBuf(0), dsamplenumber) 
 IF (nDasErr <> 0) THEN 
 BEEP 
 PRINT "ERROR "; HEX$(nDasErr); " OCCURRED DURING 'KSetBufI'": 
STOP 
 END IF 
 
'----------------------------------------------------------------------
----- 
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' Create the array of channel/gain pairs 
 
 CHANGAINARRAY(0) = 1                    ' # of chan/gain pairs 
 CHANGAINARRAY(1) = 0                    ' Chan 0 
 CHANGAINARRAY(2) = ADgaincode           ' AD gain code 
PRINT ADgaincode 
 
'----------------------------------------------------------------------
----- 
' Reformat the channel/gain array for DAS-1600 driver. 
 
 nDasErr = KFormatChanGAry%(CHANGAINARRAY(0)) 
 IF nDasErr <> 0 THEN 
 BEEP 
 PRINT "ERROR "; HEX$(nDasErr); " OCCURRED DURING 
'KFormatChnGAry'": STOP 
 END IF 
 
'----------------------------------------------------------------------
----- 
' Assign the reformatted Channel/Gain array to the A/D Frame. 
 
 nDasErr = KSetChnGAry%(hAD, CHANGAINARRAY(0)) 
 IF nDasErr <> 0 THEN 
 BEEP 
 PRINT "ERROR "; HEX$(nDasErr); " OCCURRED DURING 'KSetChnGAry'": 
STOP 
 END IF 
 
'----------------------------------------------------------------------
----- 
' uses the internal clock source of f=10MHz to set period between 
conversions. 
  
 nDasErr = KSetClkRate%(hAD, dsampletime)    't=dsampletime/f 
(sec) 
 IF nDasErr <> 0 THEN 
 BEEP 
 PRINT "ERROR "; HEX$(nDasErr); " OCCURRED DURING 'KSetClkRate'": 
STOP 
 END IF 
PRINT dsampletime 
'----------------------------------------------------------------------
----- 
'initilize the GPIB488 board and lock-in amplifier 
 CALL initialize(18, 0) 
'set lock-in output control to 488 board (need to be done first) 
 CALL send(8, "OUTX 1", status%)         ' 
'other parameters for lock-in 
 CLS : tc% = -1: sl% = -1 
 PRINT "Setting the lock-in time constants:" 
 PRINT 
 PRINT "code ---- time constant" 
 PRINT " 4 ---- 1 ms" 
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 PRINT " 5 ---- 3 ms" 
 PRINT " 6 ---- 10 ms" 
 PRINT " 7 ---- 30 ms" 
 PRINT " 8 ---- 100 ms" 
 PRINT " 9 ---- 300 ms" 
 PRINT "10 ---- 1 s" 
 PRINT "11 ---- 3 s" 
 PRINT "12 ---- 10 s" 
 WHILE (tc% > 12) OR (tc% < 4) 
  INPUT "enter time constant code = "; tc% 
 WEND 
 tc$ = "OFLT" + STR$(tc%) 
     
 mo% = tc% MOD 2                'the remainder of tc% / 3 
 di% = (tc% \ 2) - 2 
 
'calculate the time constant from tc% in ms 
 IF mo% = 0 THEN 
 tmct% = 10 ^ di% 
 ELSE 
 tmct% = 3 * 10 ^ di% 
 END IF 
 PRINT "time constant = "; tmct%; " ms" 
 
 PRINT 
 PRINT "code ---- filter slope" 
 PRINT " 0 ---- 6 dB" 
 PRINT " 1 ---- 12 dB" 
 PRINT " 2 ---- 18 dB" 
 PRINT " 3 ---- 24 dB" 
 WHILE (sl% > 3) OR (sl% < 0) 
  INPUT "enter slope code = "; sl% 
 WEND 
 sl$ = "OFSL" + STR$(sl%) 
 
'calculate delay time according to lock-in setting 
SELECT CASE sl% 
 CASE 0 
 Delaytime! = 5 * tmct% / 1000           'in second 
 CASE 1 
 Delaytime! = 7 * tmct% / 1000           'in second 
 CASE 2 
 Delaytime! = 8.5 * tmct% / 1000           'in second 
 CASE 3 
 Delaytime! = 10 * tmct% / 1000           'in second 
END SELECT 
 
 CALL send(8, tc$, status%)        'set the time constant 
 CALL send(8, sl$, status%)        'set the filter slope 
 CALL send(8, "AGAN", status%)         'set the autogain mode 
    
 poll% = 0: t1! = TIMER 
 WHILE (poll% AND 2) = 0            'bit1=high means no command 
execution 
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  CALL spoll(8, poll%, status%)      'serial poll of lock-in 
 WEND 
 PRINT "lock-in setting delay = "; TIMER - t1! 
 PRINT "data reading delay time = "; Delaytime! 
 PRINT "hit any key to complete initilization" 
 st1$ = "time const=" + STR$(tmct%) + "ms" + "; slope code=" + 
STR$(sl%) + "; " 
 DO WHILE INKEY$ = "": LOOP 
 
END SUB 
 
SUB motorctrl (dir%, stnumber%, trnumber%, J1%, de1$) STATIC 
 
 CLS 
 PRINT "hit S to stop" 
 
' motor driving loop for full travel 
4400    FOR J1% = 0 TO trnumber% - 1 
'        INPUT "enter integer parameter: ", otherdata(J10%) 
 PRINT J1% + 1; "th: wait..."; 
 CALL dproc(ADT%) 
 AdData(J1%) = ADT% 
 PRINT "done;  vol= "; (ADT% / 4096) * 10; ", now drive the 
motor..."; 
 
'motor driving loop for one move 
 FOR J20% = 1 TO stnumber% 
 value = 2 + dir%                        'go to high 
 dwOUTVal = value 
 nDasErr = KDOWrite%(hDev, 0, dwOUTVal) 
 IF nDasErr <> 0 THEN 
 BEEP:  PRINT "ERROR "; HEX$(nDasErr); " DURING 'KDOWrite'": STOP 
 END IF 
 
 value = 0 + dir%                        'go to low 
 dwOUTVal = value 
 nDasErr = KDOWrite%(hDev, 0, dwOUTVal) 
 IF nDasErr <> 0 THEN 
 BEEP:  PRINT "ERROR "; HEX$(nDasErr); " DURING 'KDOWrite'": STOP 
 END IF 
    
 CALL delay(2000)                'delay between steps 
     
 NEXT J20% 
   
 tmcount! = TIMER 
 PRINT "done.  " 
   
 IF UCASE$(INKEY$) = "S" THEN 
 INPUT "continue (C) or exit to menu (E) ?", rl$ 
 IF UCASE$(rl$) = "E" THEN GOTO 4500 
 END IF 
     
 IF UCASE$(de1$) = "N" THEN GOTO 4480 
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 LastData% = AdData(J1% - 1) 
 IF ABS(LastData% - ADT%) / ABS(LastData% + ADT%) < .01 THEN GOTO 
4480 
     
 DO                              'delay loop between moves 
   tmdiff! = TIMER - tmcount! 
 LOOP UNTIL tmdiff! > 1.7 
 
4480    NEXT J1% 
 
4500 
 END SUB 
 
SUB movestep (Axis$, StepSize%, Direction$) 
'New Subroutine for two step motor contral through port A of J2 
connector 
'bit0=h-motor dir, bit1=h-motor step, bit2=v-motor dir, bit3=v-motor 
step 
'motor moves one step on each positive edge of TTL 
'Axis$ -- choose the step motor (X or Y) 
'StepSize%--- number of loops for each move 
'Direction$-- Moving direction 
 
 IF Axis$ = "X" THEN 
  MoveValue0% = 2           'move h-motor by setting bit1 
high (0010) 
  IF Direction$ = "F" THEN 
  dir% = 0          'forward direction (bit0=0) 
  ELSE 
  dir% = 1          'backward direction (bit0=1) 
  END IF 
 ELSE 
  MoveValue0% = 8           'move v-motor by setting bit 3 
high (1000) 
  IF Direction$ = "F" THEN 
  dir% = 0          'forward direction (bit2=0) 
  ELSE 
  dir% = 4          'backward direction (bit2=1) 
  END IF 
 END IF 
 
'move one step on positive edge for StepSize% steps 
 FOR J10% = 1 TO StepSize% 
 MoveValue% = MoveValue0% + dir% 
 dwOUTVal% = MoveValue% 
 nDasErr = KDOWrite%(hDev, 0, dwOUTVal%)    'write to digital 
ports 
 IF nDasErr <> 0 THEN 
 BEEP:  PRINT "ERROR "; HEX$(nDasErr); " DURING 'KDOWrite'": STOP 
 END IF 
 
'reset the TTL output to 0 
 MoveValue% = 0 + dir% 
 dwOUTVal% = MoveValue% 
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 nDasErr = KDOWrite%(hDev, 0, dwOUTVal%) 
 'nDasErr = KDOWrite%(hDev, 0, MoveValue%) 
 IF nDasErr <> 0 THEN 
 BEEP:  PRINT "ERROR "; HEX$(nDasErr); " DURING 'KDOWrite'": STOP 
 END IF 
 
 CALL delay(3000)          'need to change the input parameter for 
different PC 
 
 NEXT J10% 
 
END SUB 
 
DEFSNG H-Z 
SUB moving (dr$, stpsz!) STATIC 
' this subroutine use 8254 counter/timer 0 with internal 100kHz clock 
as 
' square wave generator and an external divide-by-ten dividing chip (on 
the 
' small board connected to J1 connector) to drive the motor. 
' (ref: user's guide, p.E-20) 
 
 nCtrlData = &H34        'word to be writen to 8254 control 
register 
    'to setup the timer 
 nDasErr = DAS16008254CONTROL%(0, nCtrlData) 
 IF (nDasErr <> 0) THEN 
 BEEP 
 PRINT "ERROR "; HEX$(nDasErr); " OCCURRED DURING 
'DAS16008254CONTROL'": STOP 
 END IF 
 
 
'----------------------------------------------------------------------
----- 
' Enable 100KHz clock as time base for counter/timer 0 
 
 nDasErr = DAS16008254SETCLK0(0, 0)      '0 = internal, 1 = 
external 
 IF (nDasErr <> 0) THEN 
 BEEP: PRINT "ERROR "; HEX$(nDasErr); " OCCURRED DURING 
'DAS16008254SETCLK0'": STOP 
 END IF 
 
'----------------------------------------------------------------------
----- 
' Prompts for motor operation variables 
 CLS : LOCATE 10, 10 
5040    INPUT "If you turn on the HALF STEP switch, enter Y; otherwise 
enter N: ", HS$ 
 IF UCASE$(HS$) = "N" THEN hsf = 2 ELSE hsf = 1 
5050    INPUT "Enter the distance of travel in unit of (mm)  >>>  ", 
distance 
 IF distance > 100 THEN 
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 PRINT "you must enter distance less than 100 mm, please redo" 
 GOTO 5050 
 END IF 
5070    PRINT "after the input of following data, motor will run !!! " 
 INPUT "Enter motor speed in unit of (mm/s)   >>>  ", speed 
 speed = speed / hsf 
     
 IF UCASE$(dr$) = "F" THEN 
 dir = 0 
 ELSE 
 dir = 1 
 END IF 
 
' (1) prdcnt (<32,000) is the number of base period (10us) for each 
output 
'     pulse @ CTR0 OUT @ rate=100k(Hz)/prdcnt which must be > 3(Hz) 
' (2) divide-by-mv% chips was added for lower rate: 
rate=100k(Hz)/(prdcnt*mv%) 
'     which becomes > 3/mv%(Hz) 
' (3) with stepsz! in unit of (um) and speed of (mm/s) thus: 
'       speed = rate * stpsz! * .001 = 100*stpsz!/prdcnt/mv% 
 
 mv% = 10 
 prdcnt = 100 * stpsz! / speed / mv% 
     
 IF prdcnt > 32000 THEN 
 PRINT "you must enter a smaller speed (mm/s), please redo" 
 GOTO 5070 
 END IF 
     
 traveltime = distance / (speed * hsf) 
'period count number based on 100kHz time base: nCountData=100 --> 
rate=1kHz 
 nCountData = prdcnt 
' Write initial value to counter/timer 0 based on control word R/W 
format 
' this will enable the CTR0 pulse output 
' Low byte first 
 nDasErr = DAS16008254SETCOUNTER(0, 0, nCountData) 
 IF (nDasErr <> 0) THEN 
 BEEP: PRINT "ERROR "; HEX$(nDasErr); " OCCURRED DURING 
'DAS16008254SETCOUNTER'": STOP 
 END IF 
 
' High byte second (divide by 256 is the same as shifting right by 8 
bits) 
 nDasErr = DAS16008254SETCOUNTER(0, 0, INT(nCountData / 256)) 
 IF (nDasErr <> 0) THEN 
 BEEP: PRINT "ERROR "; HEX$(nDasErr); " OCCURRED DURING 
'DAS16008254SETCOUNTER'": STOP 
 END IF 
 
5090    n = 0: totaltime = 0: prvstime = 0 
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'start of the driving loop 
5100    dwOUTVal = 4 + dir 
'enable the logic gates in the home-made control circuit for motor 
driver 
 nDasErr = KDOWrite%(hDev, 0, dwOUTVal) 
 IF nDasErr <> 0 THEN 
 BEEP 
 PRINT "ERROR "; HEX$(nDasErr); " DURING 'KDOWrite'": STOP 
 END IF 
 PRINT "Running ...  press S to STOP:  " 
     
 begintime = TIMER 
'PRINT prvstime; begintime 
 
'time control loop 
 WHILE totaltime <= traveltime 
  IF UCASE$(INKEY$) = "S" THEN 
  dwOUTVal = 0                     'stop the motor driving 
  nDasErr = KDOWrite%(hDev, 0, dwOUTVal) 
   IF nDasErr <> 0 THEN 
   BEEP: PRINT "ERROR "; HEX$(nDasErr); " DURING 
'KDOWrite'": STOP 
   END IF 
  prvstime = TIMER - begintime + prvstime: BEEP 
  INPUT "press: 1--continue; 2--menu  ", n1% 
   IF n1% = 2 THEN GOTO 5200 ELSE GOTO 5100 
  END IF 
  totaltime = TIMER - begintime + prvstime 
  IF totaltime > (traveltime - 7) THEN       'start of the 
ending warning 
  SOUND 200 + n, 1 
  n = n + 1 
  END IF 
 
 WEND 
    
 dwOUTVal = 0                     'stop the motor driving 
 nDasErr = KDOWrite%(hDev, 0, dwOUTVal) 
 IF nDasErr <> 0 THEN 
  BEEP: PRINT "ERROR "; HEX$(nDasErr); " DURING 'KDOWrite'": 
STOP 
 END IF 
 BEEP: BEEP: BEEP 
 
'end of drivng loop 
 
 PRINT "total time: "; totaltime; "(s),   speed: "; distance / 
totaltime; "(mm/s)" 
 IF dir = 0 THEN dir = 1 ELSE dir = 0            'direction toggle 
 INPUT "Toggle direction and run again (y/n) ? ", ch20$ 
 IF UCASE$(ch20$) = "N" THEN GOTO 5200 
 GOTO 5090 
 
5200    END SUB 
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DEFINT H-Z 
SUB procpara (st1$, Ymin%, Ymax%) 
     
 CLS : LOCATE 10, 1 
4000    INPUT "enter total # of data you want to take (<10000): ", 
conumber 
 IF conumber > 10000 OR conumber < 1 THEN GOTO 4000 
 INPUT "enter time between data acquisition (in seconds): ", 
dactime 
 INPUT "enter test parameter: ", st1$ 
 INPUT "enter Y_mim (0 - 4096) for screen display: ", Ymin% 
 INPUT "enter Y_max (0 - 4096) for screen display: ", Ymax% 
 
END SUB 
 
SUB saving (startime$, stoptime$, st1$, totalsecond, K1%) 
 
3000    LOCATE 22, 1 
 INPUT "enter output data file name: ", fil$ 
 IF fil$ = "" THEN GOTO 3000 
 OPEN fil$ FOR OUTPUT AS #1 
 
 timemark$ = startime$ + "---" + stoptime$ 
 vollim! = 10 / ADgain 
 PRINT #1, DATE$, timemark$ 
 PRINT #1, "total seconds: ", totalsecond 
 PRINT #1, "total minutes: ", totalsecond / 60 
 PRINT #1, "actual number of data: ", K1% 
 PRINT #1, "Input Voltage Range: 0 - "; vollim!; "(volt)" 
 PRINT #1, "total # of sample per data = "; dsamplenumber; ";" 
 PRINT #1, "period between samples = "; dsampletime * .0005; 
"(ms)" 
 PRINT #1, st1$ 
 PRINT #1, "-----------" 
 PRINT #1, K1% 
     
 IF svpointer = 300 THEN 
 PRINT #1, " data count"; "  parameter" 
 END IF 
 
 FOR p1% = 0 TO K1% - 1 
 IF svpointer = 300 OR svpointer = 600 THEN 
 PRINT #1, AdData(p1%), otherdata(p1%) 
 ELSE 
 PRINT #1, AdData(p1%) 
 END IF 
 NEXT p1% 
 
 CLOSE 
 
END SUB 
 
SUB selemenu (ha) STATIC 
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 SCREEN 0: CLS : LOCATE 10, 1 
 PRINT "SELECT MODE: " 
 PRINT " 1 ---- Setting data acquisition parameters" 
 PRINT " 2 ---- Setting A/D board parameters " 
 PRINT 
 PRINT " 3 ---- Start single-shot data acquisition" 
 PRINT " 4 ---- Start continuous data acquisition " 
 PRINT 
 PRINT " 5 ---- One stepping motor control (using J1 connector)" 
'    PRINT " 6 ---- Two stepping motor control (using J2 connetor)" 
 PRINT " 6 ---- Confocal: PZT and One stepping motor" 
 PRINT 
 PRINT " 7 ---- Saving data to file " 
 PRINT " 8 ---- Exit " 
 PRINT 
 INPUT " enter a number: ", ha 
 
END SUB 
 
SUB snapdata (stepsequence%, vol!, phase!, Delaytime!) 
 
7000    lastvol! = vol! 
 CALL send(8, "SNAP?3,4", status%)        'querylock-in output R 
AND THETA 
   
 poll% = 0 
 WHILE (poll% AND 2) = 0          'bit1=high means no command 
execution 
  CALL spoll(8, poll%, status%)         'serial poll of lock-
in 
 WEND 
   
 r$ = SPACE$(50) 
 CALL enter(r$, length%, 8, status%) 
 vol$ = LEFT$(r$, length%) 
  
 IF length% < 10 THEN 
 PRINT "string length is wrong, read again" 
 GOTO 7000 
 END IF 
 
 ln% = length% - 1 
 WHILE MID$(vol$, ln%, 1) <> "," 
  ln% = ln% - 1 
 WEND 
 ll% = length% - ln% 
     
 v$ = LEFT$(vol$, ln% - 1): theta$ = RIGHT$(vol$, ll%) 
 vol! = VAL(v$): phase! = VAL(theta$) 
    
' take twice longer to read data for large variation 
 IF stepsequence% < 1 THEN GOTO 7100 
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 tt1! = TIMER 
 IF ABS(lastvol! - vol!) > .2 * lastvol! THEN 
  WHILE (TIMER - tt1!) < Delaytime! 
  WEND 
  GOTO 7000 
 END IF 
     
7100    AdData(stepsequence%) = vol! 
 otherdata(stepsequence%) = phase! 
 stepsequence% = stepsequence% + 1 
 
END SUB 
 
SUB toggleDirection (Direction$) 
IF Direction$ = "F" THEN 
 Direction$ = "R" 
ELSE 
 Direction$ = "F" 
END IF 
 
END SUB 
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A.7   Experimental Data of Rd, Td, and Tc for Porcine Dermis at 325 nm, 442 nm, 
532 nm, 632.8 nm, 850 nm, 1064 nm, 1330 nm, and 1550 nm 

Wavelength 
(nm) Rd Td Td

Thickness 
(mm) 

0.23970 0.077175 1.9977 × 10-6 0.31 

0.23887 0.080543 2.2606 × 10-6 0.32 

0.24330 0.082808 2.3836 × 10-6 0.35 

0.24521 0.082411 2.2247 × 10-6 0.29 

325 

0.24857 0.072434 1.6667 × 10-6 0.29 

0.22255 0.13161 5.2262 × 10-6 0.49 

0.17572 0.20032 1.3116 × 10-5 0.28 

0.19186 0.14454 7.0528 × 10-6 0.47 

0.19402 0.16439 7.3314 × 10-6 0.39 

442 

0.24489 0.098015 3.1297 × 10-6 0.53 

0.11721 0.37484 4.6444 × 10-5 0.32 

0.15357 0.27957 1.5763 × 10-5 0.40 

0.12746 0.29977 1.5996 × 10-5 0.38 

0.17630 0.18309 7.2656 × 10-6 0.71 

532 

0.16205 0.22745 9.2072 × 10-6  0.53 
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0.13595 0.30702 1.4966 × 10-5 0.54 

0.14539 0.28927 1.4122 × 10-5 0.68 

0.13006 0.32592 1.7470 × 10-5 0.49 

0.11003 0.40032 3.7433 × 10-5 0.39 

632.8 

0.13925 0.32083 1.9652 × 10-5 0.55 

0.10506 0.40832 2.2115 × 10-5 0.58 

0.11353 0.37396 1.9439 × 10-5 0.49 

0.07123 0.58783 7.3364 × 10-5 0.33 

0.10980 0.36753 1.9902 × 10-5 0.48 

850 

0.09156 0.42504 2.5252 × 10-5 0.46 

0.092588 0.54550 7.1006 × 10-5 0.50 

0.071364 0.59834 9.9329 × 10-5 0.37 

0.075033 0.61865 1.3838 × 10-4 0.35 

0.13746 0.34726 4.5773 × 10-5 0.54 

1064 

0.22472 0.34776 5.5714 × 10-5 0.46 

1310 0.083625 0.49633 1.2045 × 10-4 0.44 
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0.094692 0.43392 4.8034 × 10-5 0.53 

0.081498 0.49742 1.2443 × 10-4 0.37 

0.083650 0.48759 1.2400 × 10-4 0.44 

 

0.072600 0.31670 2.4563 × 10-5 0.84 

0.07483 0.17580 2.2525 × 10-5 0.82 

0.07506 0.12480 1.1367 × 10-5 0.98 

0.07499 0.20060 3.4741 × 10-5 0.75 

0.07531 0.18570 2.1074 × 10-5 0.83 

1550 

0.07519 0.18000 2.2541 × 10-5 0.82 
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A.8   Refractive Index of BK7 Glass, UV Glass, and Porcine Dermis 

Wavelength 
(nm) BK7 Glass UV Glass Porcine Dermis 

325 1.5451 1.4816 1.3933 

442 1.5261 1.4662 1.3755 

532 1.5195 1.4607 1.3586 

632.8 1.5151 1.4570 1.3539 

850 1.5098 1.4525 1.3635 

1064 1.5066 1.4496 1.3599 

1310 1.5036 1.4468 1.3571 

1550 1.5007 1.4440 1.3608 

 


